Improved Performance of Titanium Oxide/Silicon Oxide Electron‐Selective Contacts by Implementation of Magnesium Interlayer

Author(s):  
Yuta Nakagawa ◽  
Kazuhiro Gotoh ◽  
Tetsuya Inoue ◽  
Yasuyoshi Kurokawa ◽  
Noritaka Usami
2014 ◽  
Vol 190 ◽  
pp. 105-108 ◽  
Author(s):  
Jacqueline M. Rankin ◽  
Schuyler Baker ◽  
Kenneth J. Klabunde
Keyword(s):  
Azo Dye ◽  

Author(s):  
Jorge Silva-Yumi ◽  
Telmo Moreno Romero ◽  
Gabriela Chango Lescano

Nanofluids constitute an alternative for the most efficient use of energy as they allow generating or improving thermal properties among others of traditional fluids, they are defined as so-called base fluids, such as: water, ethylene glycol, oils, etc., which contain nanoparticles in suspension , such as: aluminum oxide, silicon oxide, titanium oxide, metal nanoparticles, carbon nanotubes, graphene, carbides, etc. Nanofluids can be synthesized by two methods, the nanoparticles can be obtained separately and then the nanofluid is prepared or both nanoparticles and the nanofluid can be prepared simultaneously, an important factor to consider in obtaining nanofluids is their stability. Stability can be achieved by physical treatment or chemical treatment using surfactants. There are many studies about nanofluids, however, most are obtained with synthetic nanoparticles, leaving the use of natural nanoparticles as a field to be explored, as well as other surfactants to improve their stability. Keywords: nanofluids, hybrid nanofluids, nanoparticles, nano refrigerant. Resumen Los nanofluidos constituyen una alternativa para el uso más eficiente de energía pues permiten generar o mejorar las propiedades térmicas entre otras de los fluidos tradicionales, son definidos como fluidos denominados base, como: agua, etilenglicol, aceites, etc., que contienen nanopartículas en suspensión, como: óxido de aluminio, óxido de silicio, óxido de titanio, nanopartículas metálicas, nanotubos de carbono, grafeno, carburos, etc. Los nanofluidos se pueden sintetizar por dos métodos, se pueden obtener las nanopartículas por separado y luego preparar el nanofluido o se puede preparar simultáneamente las nanopartículas y el nanofluido, un factor importante a considerar en la obtención de nanofluidos es su estabilidad. La estabilidad se puede lograr mediante tratamiento físico o tratamiento químico mediante la utilización de surfactantes. Existen muchos estudios acerca de nanofluidos sin embargo, la mayoría se obtienen con nanopartículas sintéticas, quedando el uso de nanopartículas naturales como un campo por explorar al igual que otros surfactantes para mejorar su estabilidad. Palabras Clave: nanofluidos, nonofluidos híbridos, nanoparticulas, nanorefrigerantes.


Though the chlorides of the lighter elements in Group IV, and to a less extent of those in Group III, have frequently been employed in investigations of spectra of the elements and certain of their compounds, little appears to have been recorded of the spectra of the chlorides themselves, which are described in the following pages. Examples of these investigations are:— ( a ) Professor Fowler's work on the Antarian band-spectrum of titanium oxide —in the course of which, observations of the titanium-tetrachloride tube-discharge showed “that not only is the spectrum of the chloride free from the Antarian flutings, but that it is characterised by a perfectly different group of flutings in the blue, which does not occur in the stellar spectra. This ‘chloride group’ as it may be conveniently called for purposes of reference, is a somewhat complicated cluster of flutings, fading towards the violet, having three principal heads at wave-lengths 4199·5, 4192·7 and 4188·0 (R. A.), of which the middle one is the brightest.”


2015 ◽  
Vol 1725 ◽  
Author(s):  
Dorian Liepmann ◽  
Kiana Aran ◽  
Pulickel M. Ajayan ◽  
Sowmya Viswanathan ◽  
Pingzuo Li ◽  
...  

ABSTRACTThe need for improved medical sensors based on lab-on-a-chip technologies has increased significantly because of the dramatic growth in the number of people with chronic diseases and the associated costs for their healthcare. Development and initial results of a hybrid plastic microfluidic device with an integrated graphene-protein biosensor chip for use in point-of-care (POC) is described. The initial prototype is a glucometer that uses optimized glucose oxidase bound to a graphene field effect sensor. Technologies required for development of the prototype include modification of the glucose oxidase for improved performance by protein engineering, methods to bind the enzyme to the graphene attached to the silicon oxide surface of sensor chip, and integration into a thermoplastic microfluidic device. Initial results indicate the prototype glucometer can measure glucose concentrations from low physiological levels to molar concentrations.


2010 ◽  
Vol 97 (2) ◽  
pp. 023512 ◽  
Author(s):  
Paola Delli Veneri ◽  
Lucia V. Mercaldo ◽  
Iurie Usatii

2001 ◽  
Vol 11 (12) ◽  
pp. 3125-3129 ◽  
Author(s):  
Alain Ponton ◽  
Pascal Griesmar ◽  
Sylvie Barboux-Doeuff ◽  
Clément Sanchez

2005 ◽  
Vol 200 (1-4) ◽  
pp. 976-979 ◽  
Author(s):  
K. Ortner ◽  
T. Jung ◽  
C.-P. Klages ◽  
B. Linder ◽  
B. Strauss ◽  
...  

2014 ◽  
Vol 92 (7/8) ◽  
pp. 913-916 ◽  
Author(s):  
V. Smirnov ◽  
A. Lambertz ◽  
F. Finger

We present the development and application of n-type hydrogenated microcrystalline silicon oxide (μc-SiOx:H) in semitransparent bifacial microcrystalline silicon (μc-Si:H) solar cells. Semitransparent bifacial solar cells are of interest for a number of technical applications like building integration or concentrator devices, but also can offer new insight into solar cell properties due to the possibility to illuminate the cell from both sides. Appropriately selected μc-SiOx:H n-layers with low refractive index and high optical band gap allow the reduction of the reflection of the cells and improve short circuit current density (JSC) and conversion efficiencies. The quality of n-type μc-SiOx:H window layers is demonstrated in solar cells with highly reflective ZnO/Ag contacts. High JSC values of 24.8 mA/cm2 and efficiencies of 9.5% are obtained for 1 μm thick solar cells.


Sign in / Sign up

Export Citation Format

Share Document