sintering behaviour
Recently Published Documents


TOTAL DOCUMENTS

505
(FIVE YEARS 54)

H-INDEX

38
(FIVE YEARS 5)

Open Ceramics ◽  
2021 ◽  
Vol 8 ◽  
pp. 100192
Author(s):  
Judith Boehmler ◽  
Florence Moitrier ◽  
Thierry Bourré ◽  
Julie Rossit ◽  
Fabian Delorme ◽  
...  
Keyword(s):  

2021 ◽  
pp. 1-21
Author(s):  
Partha Haldar ◽  
Tapas Kumar Bhattacharya ◽  
Nipu Modak

Abstract The study emphasized the sintering behaviour and tribo-mechanical properties of alumina ceramics by nano TiO2 addition as a sintering aid. With increase in sintering temperature, the bulk density of alumina has increased gradually and optimized at 1600°C. The optimizing effect of densification at 1600°C is 98.25% by the addition of 1 wt.% nano TiO2. The maximum solid solubility of titania in alumina grains was at 1600°C, causes optimisation of densification by 1 wt. % addition. The excess addition of TiO2 formed low dense Al2TiO5, appear as a secondary phase at grain boundaries and does not significantly improved densification. Fracture toughness increases and coefficient of friction decreases with the addition of nano TiO2 in alumina matrix. The 1wt.% nano TiO2 addition improved hardness to 8.82% and reduces specific wear rate to 45.56%. The 1wt.% nano TiO2 addition greatly influenced the microstructure of sintered Al2O3. The morphology was sharply changed from hexagonal columnar shape to order sub round orientation which also directly impact the tribo-mechanical properties of sintered alumina. The 1wt.% addition substantially decreases wear track depth as observed by 3D surface profilometer. Microscopic observation of the worn-out surface showed that wearing is majorly caused by plastic deformation and abrasion.


2021 ◽  
Vol 55 (5) ◽  
Author(s):  
Jelena Jakić ◽  
Miroslav Labor ◽  
Vanja Martinac ◽  
Martina Perić

In order to improve the properties of sintered MgO (80 % precipitation) obtained from seawater, an investigation was carried out with (0, 1, 2) w/% of nano-TiO2 and micro-TiO2 additions during sintering at a temperature of 1500 °C (1 h and 2 h). The effects of the TiO2 addition on its microstructural properties, density, porosity and chemical composition after sintering were observed. The SEM/EDS analysis confirmed the formation of a homogeneous microstructure composed mainly of periclase grains and well-distributed secondary phases. CaTiO3 and MgTiO4 are predominantly located at the inter- and intra-periclase grain boundary surfaces during cooling. The microstructure of the MgO samples with the addition of nano-TiO2 become more compact, having a positive impact on the porosity and density of the samples. The addition of 1 w/% of nTiO2 represents the optimal amount for the improvement of the properties of the MgO samples (80 % precipitation) obtained from seawater.


Author(s):  
Haiquan Wang ◽  
Shixuan Li ◽  
Kangguo Wang ◽  
Xiuli Chen ◽  
Huanfu Zhou

AbstractThis study investigates the bulk density, sintering behaviour, and microwave dielectric properties of the MgO-2B2O3 series ceramics synthesised by solid-state reaction. According to the X-ray diffraction and microstructural analyses, the as-prepared MgO-2B2O3 ceramics possess a single-phase structure with a rod-like morphology. The effects of different quantities of H3BO3 and BaCu(B2O5) (BCB) on the bulk density, sintering behaviour, and microwave dielectric properties of the MgO-2B2O3 ceramics were investigated. Accordingly, the optimal sintering temperature was obtained by adding 30 wt% H3BO3 and 8 wt% BCB. We also reduced the sintering temperature to 825 °C. Furthermore, the addition of 40 wt% H3BO3 and 4 wt% BCB increased the quality factor, permittivity, and temperature coefficient of resonance frequency of MgO-2B2O3 to 44,306 GHz (at 15 GHz), 5.1, and −32 ppm/°C, respectively. These properties make MgO-2B2O3 a viable low-temperature co-fired ceramic with broad applications in microwave dielectrics.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1259
Author(s):  
Jan Kazior ◽  
Tadeusz Pieczonka ◽  
Mateusz Laska

ECKA Granules Alumix 431D commercial grade, press ready, pre-alloyed aluminium-based powder containing 1.5 mass% of Acrawax C was used to study the effect of nitrogen linear flow on de-lubrication and sintering densification. In situ dimensional changes were controlled by dilatometry. Microstructural observations of sintered compacts were also performed. The results clearly showed the strong influence of nitrogen linear flow on de-lubrication, and thus on the sintering behaviour of the examined powder. High nitrogen linear flow is required to produce the desired sintered microstructure—characterised by residual porosity. In contrast, at low nitrogen velocity, the lubricant removal is not complete, which in turn significantly impedes densification.


Author(s):  
Piotr Wiecinski ◽  
Anna Wieclaw-Midor

AbstractThe paper presents results concerning thermal decomposition of copper II salts (acetylacetonate, acetate monohydrate and nitrate trihydrate) in synthetic air and argon flow. Thermogravimetry tests coupled with mass spectrometry were performed in temperature range of 25–1300 °C. The influence of salt addition on the rheological properties and sintering behaviour of ceramic samples was then investigated. The microstructure evolution based on light and scanning electron microscopies coupled with stereological methods was described. The performed investigations revealed not only the differences in thermal decomposition of examined salts but also differences in the phenomena related to the oxidation and reduction processes of copper products. The atmosphere has also influenced the mechanisms of salts decomposition as well as further changes in decomposition products. Moreover, the presence of ZnO powder has changed the thermal decomposition process of copper II acetylacetonate. The investigations showed that acetates and nitrates can be efficient in homogeneous distribution of small amounts of metal additives in the ZnO-based suspensions. Higher concentrations of these type of salts lead to the increase of viscosity due to the fact that acetates and nitrates increase the ionic strength in the slurry. On the other hand, acetylacetonates do not disturb the stability of the slurries. However, they are characterized by low water solubility and thus homogenous distribution of small amount of these dopants is more difficult. The addition of copper increased the grain size of the sintered ZnO samples. The copper was not segregated at grain boundaries in the form of oxide, it diffused into ZnO matrix.


Author(s):  
Edwin Andrew Ofudje ◽  
Adebusayo Emmanuel Adedapo ◽  
Olugbenga Bowale Oladeji ◽  
Ezekiel Folorunso Sodiya ◽  
Francis Hope Ibadin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document