Electrification produced by the rupture of large water drops in an electric field

1964 ◽  
Vol 90 (385) ◽  
pp. 275-286 ◽  
Author(s):  
J. H. Matthews ◽  
B. J. Mason

The experiments described in this paper are a continuation of work described in a former paper, and have for their object the examination of a mechanism suggested by Wilson in connection with the theory of thunder-clouds. In the former work the interaction of large water-drops with ions produced by X-rays was investigated. In the present work the interaction of large water-drops with electrically charged cloud particles is investigated, and the mechanism suggested by Wilson takes the following form. Consider an uncharged water-drop falling vertically through a cloud of very small water-droplets, each of which has an electric charge either positive or negative. Let there be a vertical electric field which will be taken to be of positive potential gradient so that positively charged cloud particles move down and negatively charged cloud particles move up. The electric field induces equal charges of opposite signs on the upper and lower halves of the drop. In the case considered the upper charge is negative and the lower one positive. A charged cloud particle has a definite small mobility depending on its radius and the charge it carries. Suppose now that the mobility is so small that in strong electric fields, such as occur in thunder-clouds (up to 10,000 volts/cm), the velocity with which the positively charged cloud particles move down is less than the velocity of the falling drop. Under these conditions, those positive cloud particles which are above the drop cannot overtake the drop and so do not reach it, although attracted by the negative charge on its upper half. Those positive cloud particles, which are below and which the drop over-takes, are first repelled by the lower positive charge on the drop before being attracted by the upper negative charge and, since these charges are equal in the neutral drop, these cloud particles do not reach it. Negative cloud particles coming up to meet the falling drop are attracted to its lower positively charged half and give the drop a net negative charge. This destroys the equality of the induced charges, and some of the positive cloud particles which the drop overtakes are now attracted to it. In the presence of equal numbers of positively and negatively charged cloud particles a limiting condition is approached in which the drop collects equal numbers of positive and negative cloud particles per second and has a net negative charge equal to some fraction of the induced charge.


Pressure has been used as the principal parameter in calculations of the fundamental vibrational frequencies of spherical drops of radius R , density ρ, and surface tension T carrying a charge Q or uncharged spheroidal drops of axial ratio a / b situated in a uniform electric field of strength E . Freely vibrating charged drops have a frequency f = f 0 ( 1 - Q 2 /16π R 3 T ) ½ , as shown previously by Rayleigh (1882) using energy considerations; f 0 is the vibrational frequency of non-electrified drops (Rayleigh 1879). The fundamental frequency of an uncharged drop in an electric field will decrease with increasing field strength and deformation a / b and will equal zero when E ( R )/ T ) ½ = 1.625 and a / b = 1.86; these critical values correspond to the disintegration conditions derived by Taylor (1964). An interferometric technique involving a laser confirmed the accuracy of the calculations concerned with charged drops. The vibration of water drops of radius around 2 mm was studied over a wide range of temperatures as they fell through electric fields either by suspending them in a vertical wind tunnel or allowing them to fall between a pair of vertical electrodes. Photographic analysis of the vibrations revealed good agreement between theory and experiment over the entire range of conditions studied even though the larger drops were not accurately spheroidal and the amplitude of the vibrations was large.


1967 ◽  
Vol 6 (47) ◽  
pp. 651-662 ◽  
Author(s):  
H. R. Pruppacher

The growth modes of ice crystals in supercooled water and various aqueous solutions were studied at different supercoolings by a motion-picture technique. ln pure water contained in plastic capillary tubes, ice dendrites formed which at supercoolings between 1 and 4°C. grew parallel to the tube axis. At supercoolings larger than 4°C. the direction of growth was inclined to the tube axis such that the dendrites hit the tube wall and afterwards proceeded growing in a new direction. As a result it appeared that the ice crystals grew in a zig-zag or screw fashion. This growth mode became enhanced when the supercooling was increased or salts were dissolved in the water. In large water drops, ice dendrites formed which at supercoolings smaller than 1°C. were co-planar with the seed crystal and between 1° and 5°C. split into two dendritic segments. At supercoolings larger than 5°C. multiple splitting of the seed crystal was observed and this became strongly enhanced when salts were dissolved in the water. Tentative explanations for these results are given.


1939 ◽  
Vol 9 (4) ◽  
pp. 352-364 ◽  
Author(s):  
G. R. Paranjpe ◽  
Y. G. Naik ◽  
P. B. Vaidya

1983 ◽  
Vol 4 ◽  
pp. 228-235 ◽  
Author(s):  
Luan C. Phan ◽  
Jean-Louis Laforte ◽  
Du D. Nguyen

Supercooled droplets of 38 μm mean volume diameter are accreted on a smooth aluni mum cylinder of 3.15 cm in diameter in order to study the effect of an electrostatic field upon ice formation on a power-line conductor. The results obtained show that ice grown in the presence of an applied negative field of 15 kV cm−1 exhibits a cusped-lobe structure characterized by surfacial outward knobs, convex rings of fine air bubbles and radial lines of large air bubbles; in the same conditions, a positive electric field of 15 kV cm−1 does not produce such lobe features. On the other hand, accretion tests performed in the absence of an electric field with a 33 μm droplet spectrum show that the well-developed cusped-lobe structure appears in ice at low ambient temperature and air velocity. In the present experimental conditions, the formation of cusped lobes observed in the presence of a negative electric field could be explained by a decrease in the temperature of the deposit due to a reduction of impact velocity of the charged droplets and/or an increase in the local heat-transfer coefficient at the surface of the ice accretion. Corona wind from ice points, always in the opposite direction to the impinging droplets, may also reduce their impact velocities. In addition, corona wind and roughness of the surface may contribute to a better evacuation of the latent heat and thus decrease the deposit temperature. The difference between the effects of a negative DC field and those of a DC positive field of the same strength comes from a stronger ionization intensity and/or a stronger deformation of water drops in the negative electric field.


Sign in / Sign up

Export Citation Format

Share Document