The relationship of flux quantization to charge quantization and the fine structure constant

1969 ◽  
Vol 3 (3) ◽  
pp. 269-287 ◽  
Author(s):  
Herbert Jehle
2019 ◽  
Vol 4 (6) ◽  
pp. 117-119
Author(s):  
William C. Daywitt

Despite the resounding success of the quantum electrodynamic (QED) calculations, there remains some confusion concerning the Dirac equation’s part in the calculation of the anomalous magnetic moment of the electron and proton. The confusion resides in the nature of the Dirac equation, the fine structure constant, and the relationship between the two. This paper argues that the Dirac equation describes the coupling of the electron or proton cores to the invisible Planck vacuum (PV) state (involving e2 ); and that the fine structure constant ( = e2/e2 ) connects that equation to the electron or proton particles measured in the laboratory (involving e2).


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 344
Author(s):  
T. D. Le

Astrophysical tests of current values for dimensionless constants known on Earth, such as the fine-structure constant, α , and proton-to-electron mass ratio, μ = m p / m e , are communicated using data from high-resolution quasar spectra in different regions or epochs of the universe. The symmetry wavelengths of [Fe II] lines from redshifted quasar spectra of J110325-264515 and their corresponding values in the laboratory were combined to find a new limit on space-time variations in the proton-to-electron mass ratio, ∆ μ / μ = ( 0.096 ± 0.182 ) × 10 − 7 . The results show how the indicated astrophysical observations can further improve the accuracy and space-time variations of physics constants.


2019 ◽  
Vol 218 ◽  
pp. 02012
Author(s):  
Graziano Venanzoni

I will report on the recent measurement of the fine structure constant below 1 GeV with the KLOE detector. It represents the first measurement of the running of α(s) in this energy region. Our results show a more than 5σ significance of the hadronic contribution to the running of α(s), which is the strongest direct evidence both in time-and space-like regions achieved in a single measurement. From a fit of the real part of Δα(s) and assuming the lepton universality the branching ratio BR(ω → µ+µ−) = (6.6 ± 1.4stat ± 1.7syst) · 10−5 has been determined


1964 ◽  
Vol 23 (1) ◽  
pp. 63-78 ◽  
Author(s):  
James R. Coleman ◽  
Montrose J. Moses

The indium trichloride method of Watson and Aldridge (38) for staining nucleic acids for electron microscopy was employed to study the relationship of DNA to the structure of the synaptinemal complex in meiotic prophase chromosomes of the domestic rooster. The selectivity of the method was demonstrated in untreated and DNase-digested testis material by comparing the distribution of indium staining in the electron microscope to Feulgen staining and ultraviolet absorption in thicker sections seen with the light microscope. Following staining by indium, DNA was found mainly in the microfibril component of the synaptinemal complex. When DNA was known to have been removed from aldehyde-fixed material by digestion with DNase, indium stainability was also lost. However, staining of the digested material with non-selective heavy metal techniques demonstrated the presence of material other than DNA in the microfibrils and showed that little alteration in appearance of the chromosome resulted from DNA removal. The two dense lateral axial elements of the synaptinemal complex, but not the central one to any extent, also contained DNA, together with non-DNA material.


2012 ◽  
Vol 85 (10) ◽  
Author(s):  
Eloisa Menegoni ◽  
Maria Archidiacono ◽  
Erminia Calabrese ◽  
Silvia Galli ◽  
C. J. A. P. Martins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document