Parallelism in quantum chemistry: Hydrogen bond study in DNA base pairs as an example

1984 ◽  
Vol 26 (S18) ◽  
pp. 601-618 ◽  
Author(s):  
E. Clementi ◽  
G. Corongiu ◽  
J. Detrich ◽  
S. Chin ◽  
L. Domingo
Author(s):  
Célia Fonseca Guerra ◽  
F. Matthias Bickelhaupt ◽  
Jaap G. Snijders ◽  
Evert Jan Baerends

2016 ◽  
Vol 27 (10) ◽  
pp. 1650119 ◽  
Author(s):  
Mohammad Zarei ◽  
Abdolvahab Seif ◽  
Khaled Azizi ◽  
Mohanna Zarei ◽  
Jamil Bahrami

In this paper, we show the reaction of a hydroxyl, phenyl and phenoxy radicals with DNA base pairs by the density functional theory (DFT) calculations. The influence of solvation on the mechanism is also presented by the same DFT calculations under the continuum solvation model. The results showed that hydroxyl, phenyl and phenoxy radicals increase the length of the nearest hydrogen bond of adjacent DNA base pair which is accompanied by decrease in the length of furthest hydrogen bond of DNA base pair. Also, hydroxyl, phenyl and phenoxy radicals influenced the dihedral angle between DNA base pairs. According to the results, hydrogen bond lengths between AT and GC base pairs in water solvent are longer than vacuum. All of presented radicals influenced the structure and geometry of AT and GC base pairs, but phenoxy radical showed more influence on geometry and electronic properties of DNA base pairs compared with the phenyl and hydroxyl radicals.


2014 ◽  
Vol 118 (35) ◽  
pp. 10430-10435 ◽  
Author(s):  
Michel Sassi ◽  
Damien J. Carter ◽  
Blas P. Uberuaga ◽  
Christopher R. Stanek ◽  
Ricardo L. Mancera ◽  
...  

2020 ◽  
Vol 17 (2) ◽  
pp. 124-137 ◽  
Author(s):  
Adel Mahmoud Attia ◽  
Ahmed Ibrahin Khodair ◽  
Eman Abdelnasser Gendy ◽  
Mohammed Abu El-Magd ◽  
Yaseen Ali Mosa Mohamed Elshaier

Background:Perturbation of nucleic acids structures and confirmation by small molecules through intercalation binding is an intriguing application in anticancer therapy. The planar aromatic moiety of anticancer agents was inserted between DNA base pairs leading to change in the DNA structure and subsequent functional arrest.Objective:The final scaffold of the target compounds was annulated and linked to a benzotriazole ring. These new pharmacophoric features were examined as antiviral and anticancer agents against MCF7 and their effect on DNA damage was also assessed.Methods:A new series of fully substituted 2-oxopyridine/2-thioxopyridine derivatives tethered to a benzotriazole moiety (4a-h) was synthesized through Michael cyclization of synthesized α,β- unsaturated compounds (3a-e) with appropriate active methylene derivatives. The DNA damage study was assessed by comet assay. In silico DNA molecular docking was performed using Open Eye software to corroborate the experimental results and to understand molecule interaction at the atomic level.Results:The highest DNA damage was observed in Doxorubicin, followed by 4h, then, 4b, 4g, 4f, 4e, and 4d. The docking study showed that compound 4h formed Hydrogen Bonds (HBs) as a standard ligand with GSK-3. Compound 4h was the most active compound against rotavirus Wa, HAVHM175, and HSV strains with a reduction of 30%, 40%, and 70%, respectively.Conclusion:Compound 4h was the most active compound and could act as a prospective lead molecule for anticancer agent.


1988 ◽  
Vol 53 (9) ◽  
pp. 1943-1945
Author(s):  
Pavel Hobza ◽  
Camille Sandorfy

The interaction of the 6-O methylguanine cation with cytosine and thymine was studied using the ab initio SCF method in combination with a London type expression for dispersion energy. The structure of the complex formed with cytosine differs from that found previously with guanine itself.


MRS Advances ◽  
2020 ◽  
Vol 5 (16) ◽  
pp. 815-823
Author(s):  
Ian Sands ◽  
Jinhyung Lee ◽  
Wuxia Zhang ◽  
Yupeng Chen

AbstractRNA delivery into deep tissues with dense extracellular matrix (ECM) has been challenging. For example, cartilage is a major barrier for RNA and drug delivery due to its avascular structure, low cell density and strong negative surface charge. Cartilage ECM is comprised of collagens, proteoglycans, and various other noncollagneous proteins with a spacing of 20nm. Conventional nanoparticles are usually spherical with a diameter larger than 50-60nm (after cargo loading). Therefore, they presented limited success for RNA delivery into cartilage. Here, we developed Janus base nanotubes (JBNTs, self-assembled nanotubes inspired from DNA base pairs) to assemble with small RNAs to form nano-rod delivery vehicles (termed as “Nanopieces”). Nanopieces have a diameter of ∼20nm (smallest delivery vehicles after cargo loading) and a length of ∼100nm. They present a novel breakthrough in ECM penetration due to the reduced size and adjustable characteristics to encourage ECM and intracellular penetration.


2020 ◽  
Vol 56 (2) ◽  
pp. 201-204 ◽  
Author(s):  
Kinga E. Szkaradek ◽  
Petr Stadlbauer ◽  
Jiří Šponer ◽  
Robert W. Góra ◽  
Rafał Szabla

Formation of an excited-state complex enables ultrafast photorelaxation of dark nπ* states in GC and HC base pairs.


2015 ◽  
Vol 127 (49) ◽  
pp. 14932-14935 ◽  
Author(s):  
Katharina Röttger ◽  
Hugo J. B. Marroux ◽  
Michael P. Grubb ◽  
Philip M. Coulter ◽  
Hendrik Böhnke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document