Dissociation of gas-phase dimeric complexes of lactic acid and transition-metal ions formed under electrospray ionization conditions; the role of reduction of the metal ion

2005 ◽  
Vol 19 (2) ◽  
pp. 113-120 ◽  
Author(s):  
M. Ravi Kumar ◽  
S. Prabhakar ◽  
M. Kiran Kumar ◽  
T. Jagadeshwar Reddy ◽  
M. Vairamani
Author(s):  
Mazen Hamed

Ferric uptake regulation protein is a repressor protein which binds an AT rich region of DNA (the iron box). Fur binds as a dimer in a helix turn helix mode and it is activated by iron(II) and other transition metal ions at elevated concentrations. Each transition metal ion induces certain conformational changes to aid the Fur binding, both the N-terminal and C-terminal domains take part in binding to DNA in addition to His 88 and His 86. The process is discussed in view of experimental reports. Fe(II), Mn(II) and Co(II) activate Fur to bind DNA but Zinc plays a structural role and does not activate Fur to bind DNA.


Author(s):  
Mazen Hamed ◽  
Salih Jabour

Ferric uptake regulation protein is a repressor protein which binds an AT rich region of DNA (the iron box). Fur binds as a dimer in a helix turn helix mode and it is activated by iron(II) and other transition metal ions at elevated concentrations. Each transition metal ion induces certain conformational changes to aid the Fur binding, both the N-terminal and C-terminal domains take part in binding to DNA in addition to His 88 and His 86. The process is discussed in view of experimental reports. Fe(II), Mn(II) and Co(II) activate Fur to bind DNA but Zinc plays a structural role and does not activate Fur to bind DNA.


Author(s):  
Mazen Hamed ◽  
Salih Jabour

Ferric uptake regulation protein is a repressor protein which binds an AT rich region of DNA (the iron box). Fur binds as a dimer in a helix turn helix mode and it is activated by iron(II) and other transition metal ions at elevated concentrations. Each transition metal ion induces certain conformational changes to aid the Fur binding, both the N-terminal and C-terminal domains take part in binding to DNA in addition to His 88 and His 86. The process is discussed in view of experimental reports. Fe(II), Mn(II) and Co(II) activate Fur to bind DNA but Zinc plays a structural role and does not activate Fur to bind DNA.


Author(s):  
Mazen Hamed ◽  
Salih Jabour

Ferric uptake regulation protein is a repressor protein which binds an AT rich region of DNA (the iron box). Fur binds as a dimer in a helix turn helix mode and it is activated by iron(II) and other divalent transition metal ions at elevated concentrations in a process to regulate the ion uptake. Each transition metal ion induces certain conformational changes to aid the Fur binding, both the N-terminal and C-terminal domains take part in binding to DNA in addition to His 88 and His 86 residues. The process is discussed in view of experimental reports. Fe(II), Mn(II) and Co(II) activate Fur to bind DNA experimentally but Zinc plays a structural role and does not activate Fur to bind DNA.


2018 ◽  
Vol 47 (43) ◽  
pp. 15271-15277 ◽  
Author(s):  
Caiyun Geng ◽  
Jilai Li ◽  
Maria Schlangen ◽  
Sason Shaik ◽  
Xiaoyan Sun ◽  
...  

Unusual, if not unprecedented, effects of transition-metal ions and ligands are discovered when simple metal oxides or carbides activate methane in the gas phase in manners reminiscent of oriented external electric fields.


1981 ◽  
Vol 46 (10) ◽  
pp. 2354-2363 ◽  
Author(s):  
Svatomír Kmošták ◽  
Karel Setínek

The catalytic activity of sulphonated macroporous styrene-divinylbenzene copolymers, the exchange capacity of which was neutralized from 30, 50 and 80% by Fe(III) ions and from 30% by Na ions and that of Wofatit Y-37 ion exchanger neutralized from 10% of its total exchange capacity by several transition metal ions and by sodium has been studied in isomerisation of cyclohexene and dehydration of 1-propanol in the gas phase at 130 °C. It was demonstrated that in both reactions transition metal ions exhibit additional effect to the expected neutralization of the polymer acid groups. In the case of cyclohexene isomerization, this effect depends on the degree of crosslinking of polymer mass of the catalyst. Such dependence has not been, however, observed in dehydration of 1-propanol. The type of transition metal ions did not exhibit any significant effect on the catalytic activity of the polymer catalysts studied.


2014 ◽  
Vol 76 ◽  
pp. S124
Author(s):  
Juan Du ◽  
Brett A Wagner ◽  
Garry R Buettner ◽  
Joseph J Cullen

Sign in / Sign up

Export Citation Format

Share Document