Detection of urinary metabolites of arimistane in humans by gas chromatography coupled to high‐accuracy mass spectrometry for antidoping analyses

2019 ◽  
Vol 33 (24) ◽  
pp. 1894-1905 ◽  
Author(s):  
Dayamin Martinez Brito ◽  
Xavier Torre ◽  
Francesco Botrè
1988 ◽  
Vol 118 (2) ◽  
pp. 301-305 ◽  
Author(s):  
K. Gréen ◽  
O. Vesterqvist ◽  
V. Grill

Abstract. The in vivo synthesis of thromboxane A2 and prostacyclin was estimated in 23 diabetics through measurements of the major urinary metabolites 2,3-dinor-thromboxane B2 and 2,3-dinor-6-keto-PGF1α utilizing gas chromatography-mass spectrometry. Mean excretion was similar to that in non-diabetic subjects. The possible influence of hyperglycemia on the excretion of 2,3-dinor-thromboxane B2 and 2,3-dinor-6-keto-PGF1α was evaluated in three ways: by measuring excretion before and during an acute 9-h normalization of hyperglycemia through an artificial pancreas (Biostator) as well as by comparing excretion before and 7–12 days or 40–180 days after the initiation of insulin treatment. Despite significant reducing effects on hyperglycemia or on levels of hemoglobin A1c, no effects on the excretion of the thromboxane and prostacyclin metabolites could be found. Abnormal formation of thromboxane or prostacyclin is not a generalized feature of the diabetic state.


2019 ◽  
Vol 33 (19) ◽  
pp. 1485-1493 ◽  
Author(s):  
Michele Iannone ◽  
Francesco Botrè ◽  
Silvia Parenti ◽  
Daniel Jardines ◽  
Xavier Torre

1980 ◽  
Vol 26 (2) ◽  
pp. 261-265 ◽  
Author(s):  
J Greter ◽  
S Lindstedt ◽  
H Seeman ◽  
G Steen

Abstract Urine from patients with ketoacidosis was found to contain a number of aliphatic 3-hydroxy dicarboxylic acids. The acids were purified by silicic acid chromatography and their structures determined by gas chromatography-mass spectrometry of different derivatives. The major compound was 3-hydroxydecanedioic acid. Minor compounds were 3-hydroxyoctanedioic acid, 3-hydroxyoctenedioic acid, 3-hydroxydecenedioic acid, 3-hydroxydodecanedioic acid, 3-hydroxydodecenedioic acid, 3-hydroxytetradecenedioic acid, and 3-hydroxytetradecadienedioic acid. The excretion of 3-hydroxydecanedioic acid correlated positively with the excretion of hexanedioic acid, another metabolite constantly found in ketoacidosis (Pettersen et al., Clin. Chim. Acta 38: 17-24, 1972). We suggest that the 3-hydroxy dicarboxylic acids are formed from fatty acids by a combination of omega-oxidation and incomplete beta-oxidation.


1980 ◽  
Vol 26 (2) ◽  
pp. 261-265
Author(s):  
J Greter ◽  
S Lindstedt ◽  
H Seeman ◽  
G Steen

Abstract Urine from patients with ketoacidosis was found to contain a number of aliphatic 3-hydroxy dicarboxylic acids. The acids were purified by silicic acid chromatography and their structures determined by gas chromatography-mass spectrometry of different derivatives. The major compound was 3-hydroxydecanedioic acid. Minor compounds were 3-hydroxyoctanedioic acid, 3-hydroxyoctenedioic acid, 3-hydroxydecenedioic acid, 3-hydroxydodecanedioic acid, 3-hydroxydodecenedioic acid, 3-hydroxytetradecenedioic acid, and 3-hydroxytetradecadienedioic acid. The excretion of 3-hydroxydecanedioic acid correlated positively with the excretion of hexanedioic acid, another metabolite constantly found in ketoacidosis (Pettersen et al., Clin. Chim. Acta 38: 17-24, 1972). We suggest that the 3-hydroxy dicarboxylic acids are formed from fatty acids by a combination of omega-oxidation and incomplete beta-oxidation.


2020 ◽  
Vol 12 (8) ◽  
pp. 1041-1053 ◽  
Author(s):  
Aðalheiður Dóra Albertsdóttir ◽  
Wim Van Gansbeke ◽  
Gilles Coppieters ◽  
Kyzylkul Balgimbekova ◽  
Peter Van Eenoo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document