The Development of Computer‐aided Patient‐Specific Template Design Software for 3D printing in Cranio‐Maxillofacial Surgery

Author(s):  
Afaque Rafique Memon ◽  
Dongyuan Li ◽  
Junlei Hu ◽  
Enpeng Wang ◽  
Dingzhong Zhang ◽  
...  

2016 ◽  
Vol 5 (01) ◽  
pp. 4723 ◽  
Author(s):  
Bhusnure O. G.* ◽  
Gholve V. S. ◽  
Sugave B. K. ◽  
Dongre R. C. ◽  
Gore S. A. ◽  
...  

Many researchers have attempted to use computer-aided design (C.A.D) and computer-aided manufacturing (CAM) to realize a scaffold that provides a three-dimensional (3D) environment for regeneration of tissues and organs. As a result, several 3D printing technologies, including stereolithography, deposition modeling, inkjet-based printing and selective laser sintering have been developed. Because these 3D printing technologies use computers for design and fabrication, and they can fabricate 3D scaffolds as designed; as a consequence, they can be standardized. Growth of target tissues and organs requires the presence of appropriate growth factors, so fabrication of 3Dscaffold systems that release these biomolecules has been explored. A drug delivery system (D.D.S) that administrates a pharmaceutical compound to achieve a therapeutic effect in cells, animals and humans is a key technology that delivers biomolecules without side effects caused by excessive doses. 3D printing technologies and D. D. Ss have been assembled successfully, so new possibilities for improved tissue regeneration have been suggested. If the interaction between cells and scaffold system with biomolecules can be understood and controlled, and if an optimal 3D tissue regenerating environment is realized, 3D printing technologies will become an important aspect of tissue engineering research in the near future. 3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fuelled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. Until recently, tablet designs had been restricted to the relatively small number of shapes that are easily achievable using traditional manufacturing methods. As 3D printing capabilities develop further, safety and regulatory concerns are addressed and the cost of the technology falls, contract manufacturers and pharmaceutical companies that experiment with these 3D printing innovations are likely to gain a competitive edge. This review compose the basics, types & techniques used, advantages and disadvantages of 3D printing



Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Chenxi Huang ◽  
Yisha Lan ◽  
Sirui Chen ◽  
Qing Liu ◽  
Xin Luo ◽  
...  

Despite the new ideas were inspired in medical treatment by the rapid advancement of three-dimensional (3D) printing technology, there is still rare research work reported on 3D printing of coronary arteries being documented in the literature. In this work, the application value of 3D printing technology in the treatment of cardiovascular diseases has been explored via comparison study between the 3D printed vascular solid model and the computer aided design (CAD) model. In this paper, a new framework is proposed to achieve a 3D printing vascular model with high simulation. The patient-specific 3D reconstruction of the coronary arteries is performed by the detailed morphological information abstracted from the contour of the vessel lumen. In the process of reconstruction which has 5 steps, the morphological details of the contour view of the vessel lumen are merged along with the curvature and length information provided by the coronary angiography. After comparing with the diameter of the narrow section and the diameter of the normal section in CAD models and 3D printing model, it can be concluded that there is a high correlation between the diameter of vascular stenosis measured in 3D printing models and computer aided design models. The 3D printing model has high-modeling ability and high precision, which can represent the original coronary artery appearance accurately. It can be adapted for prevascularization planning to support doctors in determining the surgical procedures.



Author(s):  
Sean Peel ◽  
Dominic Eggbeer ◽  
Hanna Burton ◽  
Hayley Hanson ◽  
Peter L Evans

This article compared the accuracy of producing patient-specific cranioplasty implants using four different approaches. Benchmark geometry was designed to represent a cranium and a defect added simulating a craniectomy. An ‘ideal’ contour reconstruction was calculated and compared against reconstructions resulting from the four approaches –‘conventional’, ‘semi-digital’, ‘digital – non-automated’ and ‘digital – semi-automated’. The ‘conventional’ approach relied on hand carving a reconstruction, turning this into a press tool, and pressing titanium sheet. This approach is common in the UK National Health Service. The ‘semi-digital’ approach removed the hand-carving element. Both of the ‘digital’ approaches utilised additive manufacturing to produce the end-use implant. The geometries were designed using a non-specialised computer-aided design software and a semi-automated cranioplasty implant-specific computer-aided design software. It was found that all plates were clinically acceptable and that the digitally designed and additive manufacturing plates were as accurate as the conventional implants. There were no significant differences between the additive manufacturing plates designed using non-specialised computer-aided design software and those designed using the semi-automated tool. The semi-automated software and additive manufacturing production process were capable of producing cranioplasty implants of similar accuracy to multi-purpose software and additive manufacturing, and both were more accurate than handmade implants. The difference was not of clinical significance, demonstrating that the accuracy of additive manufacturing cranioplasty implants meets current best practice.



Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4164
Author(s):  
Elizabeth Diederichs ◽  
Maisyn Picard ◽  
Boon Peng Chang ◽  
Manjusri Misra ◽  
Amar Mohanty

Three-dimensional (3D) printing manufactures intricate computer aided designs without time and resource spent for mold creation. The rapid growth of this industry has led to its extensive use in the automotive, biomedical, and electrical industries. In this work, biobased poly(trimethylene terephthalate) (PTT) blends were combined with pyrolyzed biomass to create sustainable and novel printing materials. The Miscanthus biocarbon (BC), generated from pyrolysis at 650 °C, was combined with an optimized PTT blend at 5 and 10 wt % to generate filaments for extrusion 3D printing. Samples were printed and analyzed according to their thermal, mechanical, and morphological properties. Although there were no significant differences seen in the mechanical properties between the two BC composites, the optimal quantity of BC was 5 wt % based upon dimensional stability, ease of printing, and surface finish. These printable materials show great promise for implementation into customizable, non-structural components in the electrical and automotive industries.



2021 ◽  
Author(s):  
Lobat Tayebi ◽  
Reza Masaeli ◽  
Kavosh Zandsalimi


2008 ◽  
Vol 134 (10) ◽  
pp. 1080 ◽  
Author(s):  
E. Bradley Strong ◽  
Amir Rafii ◽  
Bettina Holhweg-Majert ◽  
Scott C. Fuller ◽  
Marc Christian Metzger


Author(s):  
Ouassime Kerdoud ◽  
Rachid Aloua ◽  
Faiçal Slimani ◽  
Abdellah Boualam


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chien-Ho Ko

Purpose Additive manufacturing of concrete (AMoC) is an emerging technology for constructing buildings. However, due to the nature of the concrete property and constructing buildings in layers, constraints and limitations are encountered while applying AMoC in architecture. This paper aims to analyze the constraints and limitations that may be encountered while using AMoC in architecture. Design/methodology/approach A descriptive research approach is used to conduct this study. First, basic notions of AMoC are introduced. Then, challenges of AMoC, including hardware, material property, control and design, are addressed. Finally, strategies that may be used to overcome the challenges are discussed. Findings Factors influencing the success of AMoC include hardware, material, control methods, manufacturing process and design. Considering these issues in the early design phase is crucial to achieving a successful computer-aided design (CAD)/computer-aided manufacturing (CAM) integration to bring CAD and CAM benefits into the architecture industry. Originality/value In three-dimensional (3D) printing, objects are constructed layer by layer. Printing results are thus affected by the additive method (such as toolpath) and material properties (such as tensile strength and slump). Although previous studies attempt to improve AMoC, most of them focus on the manufacturing process. However, a successful application of AMoC in architecture needs to consider the possible constraints and limitations of concrete 3D printing. So far, research on the potential challenges of applying AMoC in architecture from a building lifecycle perspective is still limited. The study results of this study could be used to improve design and construction while applying AMoC in architecture.



Sign in / Sign up

Export Citation Format

Share Document