Nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors

2016 ◽  
Vol 27 (6) ◽  
pp. 925-941 ◽  
Author(s):  
Yao Zou
2021 ◽  
Author(s):  
Linh Nguyen

<div>The paper addresses the problem of efficiently controlling a class of single input multiple output (SIMO) underactuated robotic systems such as a two dimensional inverted pendulum cart or a two dimensional overhead crane. It is first proposed to employ the hierarchical sliding mode control approach to design a control law, which guarantees stability and anti-swing of the vehicle when it is driven on a predefined trajectory. More importantly, the unknown and uncertain parameters of the system caused by its actuator nonlinearity and external disturbances are adaptively estimated and inferred by the proposed fuzzy logic mechanism, which results in the efficient operation of the SIMO under-actuated system in real time. The proposed algorithm was then implemented in the synthetic environment, where the obtained results demonstrate its effectiveness.</div>


2022 ◽  
Author(s):  
Linh Nguyen

<pre>The paper proposes a new approach to efficiently control a three-dimensional overhead crane with six degrees of freedom (DoF). In addition to five usual output variables including three positions of the trolley, bridge and pulley and two swing angles of the hoisting cable, it is proposed to consider elasticity of the hoisting cable, which causes oscillation in the cable direction. That is, there exists $6^{th}$ under-actuated output in the crane system. To design an efficient controller for the six-DoF crane, it first employs the hierarchical sliding mode control approach, which not only guarantees stability but also minimizes sway and oscillation of the overhead crane when it transports a payload to desired location. Moreover, the unknown and uncertain parameters of the system caused by its actuator nonlinearity and external disturbances are adaptively estimated and inferred by utilizing the fuzzy inference rule mechanism, which results in efficient operations of the crane in real time. More importantly, stabilization of the crane controlled by the proposed algorithm is theoretically proved by the use of the Lyapunov function. The proposed control approach was implemented in the synthetic environment for the extensive evaluation, where the obtained results demonstrate its effectiveness.</pre>


2022 ◽  
Author(s):  
Linh Nguyen

<pre>The paper proposes a new approach to efficiently control a three-dimensional overhead crane with six degrees of freedom (DoF). In addition to five usual output variables including three positions of the trolley, bridge and pulley and two swing angles of the hoisting cable, it is proposed to consider elasticity of the hoisting cable, which causes oscillation in the cable direction. That is, there exists $6^{th}$ under-actuated output in the crane system. To design an efficient controller for the six-DoF crane, it first employs the hierarchical sliding mode control approach, which not only guarantees stability but also minimizes sway and oscillation of the overhead crane when it transports a payload to desired location. Moreover, the unknown and uncertain parameters of the system caused by its actuator nonlinearity and external disturbances are adaptively estimated and inferred by utilizing the fuzzy inference rule mechanism, which results in efficient operations of the crane in real time. More importantly, stabilization of the crane controlled by the proposed algorithm is theoretically proved by the use of the Lyapunov function. The proposed control approach was implemented in the synthetic environment for the extensive evaluation, where the obtained results demonstrate its effectiveness.</pre>


2021 ◽  
Vol 26 (5) ◽  
pp. 634-646
Author(s):  
Weiyang Wang ◽  
Ke Cui ◽  
Lizhong Gu ◽  
Xinjun Lü

AbstractThis study proposes two speed controllers based on a robust adaptive non-singular terminal sliding mode control approach for the cooperative adaptive cruise control problem in a connected and automated vehicular platoon. The delay-based spacing policy is adopted to guarantee that all vehicles in the platoon track the same target velocity profile at the same position while maintaining a predefined time gap. Factors such as nonlinear vehicle longitudinal dynamics, engine dynamics with time delay, undulating road profiles, parameter uncertainties, and external disturbances are considered in the system modeling and controller design. Different control objectives are assigned to the leading and following vehicles. Then, controllers consisting of a sliding mode controller with parameter adaptive laws based on the ego vehicle’s state deviation and linear coupled state errors, and a Smith predictor for time delay compensation are designed. Both inner stability and strong string stability are guaranteed in the case of nonlinear sliding manifolds. Finally, the effectiveness of the proposed controllers and the benefits of 44.73% shorter stabilization time, 11.20% less speed overshoot, and virtually zero steady-state inner vehicle distance deviation are illustrated in a simulation study of a seven-vehicle platoon cooperative adaptive cruise control and comparison experiments with a coupled sliding mode control approach.


2021 ◽  
Author(s):  
Linh Nguyen

<div>The paper addresses the problem of efficiently controlling a class of single input multiple output (SIMO) underactuated robotic systems such as a two dimensional inverted pendulum cart or a two dimensional overhead crane. It is first proposed to employ the hierarchical sliding mode control approach to design a control law, which guarantees stability and anti-swing of the vehicle when it is driven on a predefined trajectory. More importantly, the unknown and uncertain parameters of the system caused by its actuator nonlinearity and external disturbances are adaptively estimated and inferred by the proposed fuzzy logic mechanism, which results in the efficient operation of the SIMO under-actuated system in real time. The proposed algorithm was then implemented in the synthetic environment, where the obtained results demonstrate its effectiveness.</div>


Sign in / Sign up

Export Citation Format

Share Document