Experimental tests of hybrid VTOL unmanned aerial vehicle designed for surveillance missions and operations in maritime conditions from ship‐based helipads

2021 ◽  
Author(s):  
Leszek Ambroziak ◽  
Maciej Ciężkowski ◽  
Adam Wolniakowski ◽  
Sławomir Romaniuk ◽  
Arkadiusz Bożko ◽  
...  
Author(s):  
Yiqun Dong ◽  
Zhixiang Liu ◽  
Bin Yu ◽  
Youmin Zhang

This paper discusses a position and height limitation control for a quadrotor UAV (Unmanned Aerial Vehicle) using Model Predictive Control (MPC) approach. Nonlinear dynamics of the quadrotor is discussed first, and decoupled linearized dynamics is obtained. For the implementation of MPC, extended state vector of vehicle is generated, and augmented linear dynamics is constructed. The MPC in this paper utilizes a set of Laguerre function as basis to approximate the future movement of modeled vehicle. Position/height constraints and vehicle actuator characteristics enter the dynamics as linearized inequalities, which could be solved on-line via a recursive optimization approach. While validations based on experimental tests will be conducted in future, currently simulations have been completed. Based on the simulation results, when state of the vehicle is laid within the permissible bound, it retains the same dynamics of original vehicle. However, if predicted response exceeds the limits, however, MPC will take effect and restrict associate vehicle states. The discussed MPC framework in this paper is considered to be applicable.


2020 ◽  
Vol 53 (3-4) ◽  
pp. 711-718
Author(s):  
Yao Lei ◽  
Mingxin Cheng

In this paper, an attempt was made to obtain the aerodynamic performance of a Hex-rotor unmanned aerial vehicle with different rotor spacing. The hover efficiency of the Hex-rotor unmanned aerial vehicle is analyzed by both experimental tests and numerical simulations. First, a series of index to characterize the aerodynamic performance of the Hex-rotor unmanned aerial vehicle are analyzed theoretically, and then both tests and simulations on a Hex-rotor unmanned aerial vehicle with different rotor spacing ratio ( i = 0.50, 0.56, 0.63, 0.71, 0.83) were presented in details. For a custom-designed test platform, the thrust, power loading and hover efficiency of the Hex-rotor unmanned aerial vehicle were obtained in this paper. Finally, computational fluid dynamics simulations are performed to obtain the streamline distributions of the flow field, pressure and velocity contour of the Hex-rotor unmanned aerial vehicle. Results show that the aerodynamic performance of the Hex-rotor unmanned aerial vehicle is varied by changing the rotor spacing. Specifically, the smaller rotor spacing may improve the aerodynamic performance of the Hex-rotor unmanned aerial vehicle by increasing the rotor interferences. In the meantime, the effects of mutual interference between the rotors are gradually reduced with the increase of the rotor spacing. Moreover, the uniformity of the streamline distribution, the shape and the symmetry of the vortex are necessary conditions for the Hex-rotor unmanned aerial vehicle to generate a larger thrust. It was also noted that the thrust increased by 5.61% and the overall efficiency increased by about 8.37% at i = 0.63 for the working mode (2200 r/min), which indicated that the rotor spacing ratio at i = 0.63 obtained a best aerodynamic performance.


2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

2018 ◽  
pp. 7-13
Author(s):  
Anton M. Mishchenko ◽  
Sergei S. Rachkovsky ◽  
Vladimir A. Smolin ◽  
Igor V . Yakimenko

Results of experimental studying radiation spatial structure of atmosphere background nonuniformities and of an unmanned aerial vehicle being the detection object are presented. The question on a possibility of its detection using optoelectronic systems against the background of a cloudy field in the near IR wavelength range is also considered.


Author(s):  
Amir Birjandi ◽  
◽  
Valentin Guerry ◽  
Eric Bibeau ◽  
Hamidreza Bolandhemmat ◽  
...  

2019 ◽  
Vol E102.B (10) ◽  
pp. 2014-2020
Author(s):  
Yancheng CHEN ◽  
Ning LI ◽  
Xijian ZHONG ◽  
Yan GUO

Sign in / Sign up

Export Citation Format

Share Document