scholarly journals Spatially adaptive semi-supervised learning with Gaussian processes for hyperspectral data analysis

2011 ◽  
Vol 4 (4) ◽  
pp. 358-371 ◽  
Author(s):  
Goo Jun ◽  
Joydeep Ghosh
Author(s):  
Rui Xie ◽  
Roshanak Darvishzadeh ◽  
Andrew K. Skidmore ◽  
Marco Heurich ◽  
Stefanie Holzwarth ◽  
...  

2006 ◽  
Author(s):  
Wolfgang Koppe ◽  
Rainer Laudien ◽  
Martin L. Gnyp ◽  
Liangliang Jia ◽  
Fei Li ◽  
...  

2020 ◽  
Vol 19 (01) ◽  
pp. 283-316 ◽  
Author(s):  
Luis Morales ◽  
José Aguilar ◽  
Danilo Chávez ◽  
Claudia Isaza

This paper proposes a new approach to improve the performance of Learning Algorithm for Multivariable Data Analysis (LAMDA). This algorithm can be used for supervised and unsupervised learning, based on the calculation of the Global Adequacy Degree (GAD) of one individual to a class, through the contributions of all its descriptors. LAMDA has the capability of creating new classes after the training stage. If an individual does not have enough similarity to the preexisting classes, it is evaluated with respect to a threshold called the Non-Informative Class (NIC), this being the novelty of the algorithm. However, LAMDA has problems making good classifications, either because the NIC is constant for all classes, or because the GAD calculation is unreliable. In this work, its efficiency is improved by two strategies, the first one, by the calculation of adaptable NICs for each class, which prevents that correctly classified individuals create new classes; and the second one, by computing the Higher Adequacy Degree (HAD), which grants more robustness to the algorithm. LAMDA-HAD is validated by applying it in different benchmarks and comparing it with LAMDA and other classifiers, through a statistical analysis to determinate the cases in which our algorithm presents a better performance.


2020 ◽  
Vol 12 (2) ◽  
pp. 297 ◽  
Author(s):  
Nasehe Jamshidpour ◽  
Abdolreza Safari ◽  
Saeid Homayouni

This paper introduces a novel multi-view multi-learner (MVML) active learning method, in which the different views are generated by a genetic algorithm (GA). The GA-based view generation method attempts to construct diverse, sufficient, and independent views by considering both inter- and intra-view confidences. Hyperspectral data inherently owns high dimensionality, which makes it suitable for multi-view learning algorithms. Furthermore, by employing multiple learners at each view, a more accurate estimation of the underlying data distribution can be obtained. We also implemented a spectral-spatial graph-based semi-supervised learning (SSL) method as the classifier, which improved the performance of the classification task in comparison with supervised learning. The evaluation of the proposed method was based on three different benchmark hyperspectral data sets. The results were also compared with other state-of-the-art AL-SSL methods. The experimental results demonstrated the efficiency and statistically significant superiority of the proposed method. The GA-MVML AL method improved the classification performances by 16.68%, 18.37%, and 15.1% for different data sets after 40 iterations.


Sign in / Sign up

Export Citation Format

Share Document