Unsupervised Classification System for Hyperspectral Data Analysis

2001 ◽  
Author(s):  
Luis O. Jimenez ◽  
Miguel Velez ◽  
Shawn Hunt
2016 ◽  
Vol 5 (2) ◽  
pp. 41 ◽  
Author(s):  
Jessica Mitchell ◽  
Nancy Glenn ◽  
Matthew Anderson ◽  
Ryan Hruska

<p class="emsd"><span lang="EN-GB">Unmanned Aerial Systems (UAS)-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Boise Center Aerospace Lab were tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The motivation for this study was to better understand the challenges associated with UAS-based hyperspectral data for distinguishing native grasses such as Sandberg bluegrass (<em>Poa secunda</em>) from invasives such as burr buttercup (<em>Ranunculus testiculatus)</em> in a shrubland environment. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. However, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. In many cases, the supervised classifications accentuated noise or features in the mosaic that were artifacts of color balancing and feathering in areas of flightline overlap. Future UAS flight missions that optimize flight planning; minimize illumination differences between flightlines; and leverage ground reference data and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass from burr buttercup. </span></p>


2006 ◽  
Author(s):  
Wolfgang Koppe ◽  
Rainer Laudien ◽  
Martin L. Gnyp ◽  
Liangliang Jia ◽  
Fei Li ◽  
...  

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 411 ◽  
Author(s):  
Emanuele Torti ◽  
Alessandro Fontanella ◽  
Antonio Plaza ◽  
Javier Plaza ◽  
Francesco Leporati

One of the most important tasks in hyperspectral imaging is the classification of the pixels in the scene in order to produce thematic maps. This problem can be typically solved through machine learning techniques. In particular, deep learning algorithms have emerged in recent years as a suitable methodology to classify hyperspectral data. Moreover, the high dimensionality of hyperspectral data, together with the increasing availability of unlabeled samples, makes deep learning an appealing approach to process and interpret those data. However, the limited number of labeled samples often complicates the exploitation of supervised techniques. Indeed, in order to guarantee a suitable precision, a large number of labeled samples is normally required. This hurdle can be overcome by resorting to unsupervised classification algorithms. In particular, autoencoders can be used to analyze a hyperspectral image using only unlabeled data. However, the high data dimensionality leads to prohibitive training times. In this regard, it is important to realize that the operations involved in autoencoders training are intrinsically parallel. Therefore, in this paper we present an approach that exploits multi-core and many-core devices in order to achieve efficient autoencoders training in hyperspectral imaging applications. Specifically, in this paper, we present new OpenMP and CUDA frameworks for autoencoder training. The obtained results show that the CUDA framework provides a speed-up of about two orders of magnitudes as compared to an optimized serial processing chain.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5684
Author(s):  
Laura Bianca Bilius ◽  
Ştefan Gheorghe Pentiuc

Hyperspectral images (HSIs) are a powerful tool to classify the elements from an area of interest by their spectral signature. In this paper, we propose an efficient method to classify hyperspectral data using Voronoi diagrams and strong patterns in the absence of ground truth. HSI processing consumes a great deal of computing resources because HSIs are represented by large amounts of data. We propose a heuristic method that starts by applying Parafac decomposition for reduction and to construct the abundances matrix. Furthermore, the representative nodes from the abundances map are searched for. A multi-partition of these nodes is found, and based on this, strong patterns are obtained. Then, based on the hierarchical clustering of strong patterns, an optimum partition is found. After strong patterns are labeled, we construct the Voronoi diagram to extend the classification to the entire HSI.


Author(s):  
R. Kiran Kumar ◽  
B. Saichandana ◽  
K. Srinivas

<p>This paper presents genetic algorithm based band selection and classification on hyperspectral image data set. Hyperspectral remote sensors collect image data for a large number of narrow, adjacent spectral bands. Every pixel in hyperspectral image involves a continuous spectrum that is used to classify the objects with great detail and precision. In this paper, first filtering based on 2-D Empirical mode decomposition method is used to remove any noisy components in each band of the hyperspectral data. After filtering, band selection is done using genetic algorithm in-order to remove bands that convey less information. This dimensionality reduction minimizes many requirements such as storage space, computational load, communication bandwidth etc which is imposed on the unsupervised classification algorithms. Next image fusion is performed on the selected hyperspectral bands to selectively merge the maximum possible features from the selected images to form a single image. This fused image is classified using genetic algorithm. Three different indices, such as K-means Index (KMI) and Jm measure are used as objective functions. This method increases classification accuracy and performance of hyperspectral image than without dimensionality reduction.</p>


Sign in / Sign up

Export Citation Format

Share Document