SIMS study of a 55% Al?Zn alloy coating for corrosion protection of steel wire products

1982 ◽  
Vol 4 (2) ◽  
pp. 56-62 ◽  
Author(s):  
M. Van Craen ◽  
F. Adams ◽  
G. Haemers
2011 ◽  
Vol 704-705 ◽  
pp. 1406-1409
Author(s):  
Meng Song ◽  
Yun Li Feng ◽  
Jing Bo Yang

Annealing and dip galvanizing treatments of Galvalume were studied by using methods of Gleeble thermal simulation experiment and optical microscopy (OM), scanning electronic microscopy (SEM), X-ray energy dispersive analysis (EDAX), X-ray diffraction (XRD) and so on. Meanwhile, surface morphology, microstructure, phases and the respective compositions of Al-Zn alloy coating plate were analyzed. The results show that decreased rate and prolonged time of annealing treatment cause less effect on process ability of product, which all because of the short time of annealing process in continuous aluminum-zinc treatment. However, coarse grain which causes low strength, high elongation and r value occurs when rising annealing temperature. To get better coated surface, in-zinc pot temperature should be controlled in the range of 590~610°C, and height of air-knife nozzle should be kept in the range of 150~200mm. Surface layer of 55%Al-Zn alloy coating is covered by Al-Zn alloy, the intermediate alloy layer is consisted of binary and ternary compounds, such as θ phase (FeAl3), Al0.3Fe3Si0.7 and Al3.21Si0.47. Keywords: Galvalume, Process, Microstructure, Properties


RSC Advances ◽  
2016 ◽  
Vol 6 (40) ◽  
pp. 34005-34013 ◽  
Author(s):  
Liju Elias ◽  
K. Udaya Bhat ◽  
A. Chitharanjan Hegde

The corrosion resistance of monolayer Ni–P alloy coating is increased to many folds by nanolaminated multilayer alloy coating technique.


Author(s):  
Qun Luo ◽  
Feng Jin ◽  
Qian Li ◽  
Jie-Yu Zhang ◽  
Kuo-Chih Chou

2018 ◽  
Vol 936 ◽  
pp. 171-177
Author(s):  
Tai Xiong Guo ◽  
Xue Qiang Dong ◽  
Chang Rong Ran

According to that mini spangle is the most common defect affecting the appearance quality of hot-dip 55%Al-Zn alloy coated steel sheet, industrial experiments and statistical analysis were done to investigate the influence of cold rolling process on the formation of mini spangle. The results show that, with the decrease of rolling oil concentration, the increase of rolling time, and the increase of rolling pass, the probability of mini-spangle formation increases. Due to the different equipment conditions, the probability of mini-spangle formation on the upper and lower surfaces of steel strip is different. The reason of mini-spangle formation lies in the presence of carboxylates (R-COO-Fe) result from the residual emulsion on the surface of cold rolled steel strip. The carboxylates may interfere with the interfacial reaction between the steel substrate and Al-Zn bath, and result in more convex Fe5Si2Al20 phases formed on the surface of intermetallic compound layer. The Fe5Si2Al20 phases may provide more heterogeneous nucleation sites for the formation of Al-rich dendrites and lead to the formation of mini spangle.


Sign in / Sign up

Export Citation Format

Share Document