Thin Pore-Filled Ion Exchange Membranes for High Power Density in Reverse Electrodialysis: Effects of Structure on Resistance, Stability, and Ion Selectivity

2017 ◽  
Vol 2 (5) ◽  
pp. 1974-1978 ◽  
Author(s):  
Mi-Soon Lee ◽  
Han-Ki Kim ◽  
Chan-Soo Kim ◽  
Ho-Young Suh ◽  
Kee-Suk Nahm ◽  
...  
2015 ◽  
Vol 3 (31) ◽  
pp. 16302-16306 ◽  
Author(s):  
Han-Ki Kim ◽  
Mi-Soon Lee ◽  
Seo-Yoon Lee ◽  
Young-Woo Choi ◽  
Nam-Jo Jeong ◽  
...  

In the present study, a novel reverse electrodialysis (RED) stack with ultrathin lab-made pore-filling membranes and a high-open-area spacer was proposed to enhance the gross power density.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 406
Author(s):  
Denis Davydov ◽  
Elena Nosova ◽  
Sergey Loza ◽  
Aslan Achoh ◽  
Alexander Korzhov ◽  
...  

The paper shows the possibility of using a microheterogeneous model to estimate the transport numbers of counterions through ion-exchange membranes. It is possible to calculate the open-circuit potential and power density of the reverse electrodialyzer using the data obtained. Eight samples of heterogeneous ion-exchange membranes were studied, two samples for each of the following types of membranes: Ralex CM, Ralex AMH, MK-40, and MA-41. Samples in each pair differed in the year of production and storage conditions. In the work, these samples were named “batch 1” and “batch 2”. According to the microheterogeneous model, to calculate the transport numbers of counterions, it is necessary to use the concentration dependence of the electrical conductivity and diffusion permeability. The electrolyte used was a sodium chloride solution with a concentration range corresponding to the conditional composition of river water and the salinity of the Black Sea. During the research, it was found that samples of Ralex membranes of different batches have similar characteristics over the entire range of investigated concentrations. The calculated values of the transfer numbers for membranes of different batches differ insignificantly: ±0.01 for Ralex AMH in 1 M NaCl. For MK-40 and MA-41 membranes, a significant scatter of characteristics was found, especially in concentrated solutions. As a result, in 1 M NaCl, the transport numbers differ by ±0.05 for MK-40 and ±0.1 for MA-41. The value of the open circuit potential for the Ralex membrane pair showed that the experimental values of the potential are slightly lower than the theoretical ones. At the same time, the maximum calculated power density is higher than the experimental values. The maximum power density achieved in the experiment on reverse electrodialysis was 0.22 W/m2, which is in good agreement with the known literature data for heterogeneous membranes. The discrepancy between the experimental and theoretical data may be the difference in the characteristics of the membranes used in the reverse electrodialysis process from the tested samples and does not consider the shadow effect of the spacer in the channels of the electrodialyzer.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 609
Author(s):  
Hanki Kim ◽  
Jiyeon Choi ◽  
Namjo Jeong ◽  
Yeon-Gil Jung ◽  
Haeun Kim ◽  
...  

The reverse electrodialysis (RED) stack-harnessing salinity gradient power mainly consists of ion exchange membranes (IEMs). Among the various types of IEMs used in RED stacks, pore-filling ion exchange membranes (PIEMs) have been considered promising IEMs to improve the power density of RED stacks. The compositions of PIEMs affect the electrical resistance and permselectivity of PIEMs; however, their effect on the performance of large RED stacks have not yet been considered. In this study, PIEMs of various compositions with respect to the RED stack were adopted to evaluate the performance of the RED stack according to stack size (electrode area: 5 × 5 cm2 vs. 15 × 15 cm2). By increasing the stack size, the gross power per membrane area decreased despite the increase in gross power on a single RED stack. The electrical resistance of the PIEMs was the most important factor for enhancing the power production of the RED stack. Moreover, power production was less sensitive to permselectivities over 90%. By increasing the RED stack size, the contributions of non-ohmic resistances were significantly increased. Thus, we determined that reducing the salinity gradients across PIEMs by ion transport increased the non-ohmic resistance of large RED stacks. These results will aid in designing pilot-scale RED stacks.


Author(s):  
Andreas Patschger ◽  
Markus Franz ◽  
Jens Bliedtner ◽  
Jean Pierre Bergmann

2001 ◽  
Vol 37 (9) ◽  
pp. 597
Author(s):  
H.C. Chiu ◽  
S.C. Yang ◽  
F.T. Chien ◽  
Y.J. Chan

Sign in / Sign up

Export Citation Format

Share Document