scholarly journals Reactive Oxygen Species: Rhodamine-Modified Upconversion Nanophosphors for Ratiometric Detection of Hypochlorous Acid in Aqueous Solution and Living Cells (Small 17/2014)

Small ◽  
2014 ◽  
Vol 10 (17) ◽  
pp. 3592-3592
Author(s):  
Yi Zhou ◽  
Wenbo Pei ◽  
Chenyuan Wang ◽  
Jixin Zhu ◽  
Jiansheng Wu ◽  
...  
2013 ◽  
Vol 295-298 ◽  
pp. 475-478 ◽  
Author(s):  
Zhi Xiang Han ◽  
Ming Hui Du ◽  
Guo Xi Liang ◽  
Xiang Yang Wu

Rhodamine B thiohydrazide (RBS) was firstly employed as turn-on fluorescent probe for hypochlorite in aqueous solution and living cells. It exhibits a stable response to hypochlorite from 1.0×10-6to 1.0×10-5M with a detection limit of 3.3×10-7M. The response of this probe to hypochlorite is fast and highly selective compared with other reactive oxygen species (such as.OH,1O2, H2O2) and other common anions (such as X-, ClO2-, ClO4-, NO3-, NO2-, OH-, Ac-, CO32-, SO42-).


Author(s):  
Qian Wu ◽  
Youmei Li ◽  
Ying Li ◽  
Dong Wang ◽  
Ben Zhong Tang

Hydrogen peroxide (H2O2), as one kind of key reactive oxygen species (ROS), is mainly produced endogenously primarily in the mitochondria. The selective monitoring of H2O2 in living cells is of...


Small ◽  
2014 ◽  
Vol 10 (17) ◽  
pp. 3560-3567 ◽  
Author(s):  
Yi Zhou ◽  
Wenbo Pei ◽  
Chenyuan Wang ◽  
Jixin Zhu ◽  
Jiansheng Wu ◽  
...  

2018 ◽  
Vol 78 (6) ◽  
pp. 1390-1399 ◽  
Author(s):  
Wenshu Li ◽  
Peng Zhou ◽  
Jing Zhang ◽  
Yongli Zhang ◽  
Gucheng Zhang ◽  
...  

Abstract This study investigated the generation of reactive oxygen species (ROS) (O2−•, H2O2, and HO•) by promoting the Cu(II)/Cu(I) redox cycle with certain reducing agents (RAs) in aerobic aqueous solution, and benzoic acid (BA) was employed as indicator for the hydroxyl radical (HO•). Hydroxylamine (HA) can reduce Cu(II) to Cu(I) to induce chain reactions of copper species resulting in the generation of the superoxide radical (O2−•) and hydrogen peroxide (H2O2), and the intermediate Cu(I) can further activate H2O2 via a Fenton-like reaction to produce HO•, creating the remarkable BA degradation. O2 is indispensable, and unprotonated HA is the motive power in the O2/Cu/HA system. Moreover, pH is a crucial factor of the O2/Cu/HA system due to the protonated HA not being able to reduce Cu(II) into Cu(I). The oxidation of HA can be effectively induced by trace amounts of Cu(II), and both a higher HA dosage and a higher Cu(II) dosage can enhance H2O2 generation and BA degradation. In addition, some other RAs that can reduce Cu(II) into Cu(I) could replace HA in the O2/Cu/HA system to induce the generation of these ROS in aerobic aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document