scholarly journals Trap‐Assisted Transition Energy Levels of SrF 2 :Pr 3+ −Yb 3+ Nanophosphor in TiO 2 Photoanode for Luminescence Tuning in Dye‐Sensitized Photovoltaic Cells

Solar RRL ◽  
2021 ◽  
Vol 5 (10) ◽  
pp. 2170101
Author(s):  
Ashok Kumar Kaliamurthy ◽  
Hyeong Cheol Kang ◽  
Francis Kwaku Asiam ◽  
Kicheon Yoo ◽  
Jae-Joon Lee
2021 ◽  
Vol MA2021-02 (13) ◽  
pp. 646-646
Author(s):  
Ashok Kumar Kaliamurthy ◽  
Hyeong Cheol Kang ◽  
Francis Kwaku Asiam ◽  
Kicheon Yoo ◽  
Jae-Joon Lee

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Akihiko Nagata ◽  
Takeo Oku ◽  
Tsuyoshi Akiyama ◽  
Atsushi Suzuki ◽  
Yasuhiro Yamasaki ◽  
...  

Phthalocyanines/fullerene organic photovoltaic cells were fabricated and characterized. Effects of Au nanoparticle addition to a hole transfer layer were also investigated, and power conversion efficiencies of the photovoltaic cells were improved after blending the Au nanoparticle into PEDOT:PSS. Nanostructures of the Au nanoparticles were investigated by transmission electron microscopy and X-ray diffraction. Energy levels of molecules were calculated by molecular orbital calculations, and the nanostructures and electronic property were discussed.


Author(s):  
Gabriela Lewinska ◽  
Jerzy Sanetra ◽  
Konstanty W. Marszalek

AbstractAmong many chemical compounds synthesized for third-generation photovoltaic applications, quinoline derivatives have recently gained popularity. This work reviews the latest developments in the quinoline derivatives (metal complexes) for applications in the photovoltaic cells. Their properties for photovoltaic applications are detailed: absorption spectra, energy levels, and other achievements presented by the authors. We have also outlined various methods for testing the compounds for application. Finally, we present the implementation of quinoline derivatives in photovoltaic cells. Their architecture and design are described, and also, the performance for polymer solar cells and dye-synthesized solar cells was highlighted. We have described their performance and characteristics. We have also pointed out other, non-photovoltaic applications for quinoline derivatives. It has been demonstrated and described that quinoline derivatives are good materials for the emission layer of organic light-emitting diodes (OLEDs) and are also used in transistors. The compounds are also being considered as materials for biomedical applications.


2005 ◽  
Vol 5 (2) ◽  
pp. 149-151 ◽  
Author(s):  
Akinori Konno ◽  
Tatsuya Kitagawa ◽  
Hiroaki Kida ◽  
G.R. Asoka Kumara ◽  
Kirthi Tennakone

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6708
Author(s):  
Paweł Węgierek ◽  
Justyna Pastuszak ◽  
Kamil Dziadosz ◽  
Marcin Turek

The main goal of this work was to conduct a comparative analysis of the electrical properties of the silicon implanted with neon ions, depending on the dose of ions and the type of substrate doping, for the possibility of generating additional energy levels by ion implantation in terms of improving the efficiency of photovoltaic cells made on its basis. The article presents the results of research on the capacitance and conductance of silicon samples doped with boron and phosphorus, the structure of which was modified in the implantation process with Ne+ ions with energy E = 100 keV and different doses. The analysis of changes in electrical properties recorded at the annealing temperature of the samples Ta = 298 K, 473 K, 598 K, 673 K, and 873 K, concerned the influence of the test temperature in the range from 203 K to 373 K, as well as the frequency f from 100 Hz to 10 MHz, and voltage U from 0.25 V to 2 V. It was possible to detect intermediate bands in the tested samples and determine their position in the band gap by estimating the activation energy value. By means of implantation, it is possible to modify the width of the silicon energy gap, the value of which directly affects the efficiency of the photovoltaic cell made on its basis. By introducing appropriate defects into the silicon crystal lattice, contributing to a change in the value of the energy gap Eg, it is possible to increase the efficiency of the solar cell. On the basis of the obtained results, it can be seen that the highest activation energies are achieved for samples doped with phosphorus.


Sign in / Sign up

Export Citation Format

Share Document