Impact of support stiffness on the performance of negative stiffness dampers for vibration control of stay cables

2020 ◽  
Vol 27 (10) ◽  
Author(s):  
Majd Javanbakht ◽  
Shaohong Cheng ◽  
Faouzi Ghrib
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Seunghoo Jeong ◽  
Young-Joo Lee ◽  
Sung-Han Sim

As the construction of long-span bridges such as cable-stayed bridges increases worldwide, maintaining bridge serviceability and operability has become an important issue in civil engineering. The stay cable is a principal component of cable-stayed bridges and is generally lightly damped and intrinsically vulnerable to vibration. Excessive vibrations in stay cables can potentially cause long-term fatigue accumulation and serviceability issues. Previous studies have mainly focused on the mitigation of cable vibration within an acceptable operational level, while little attention has been paid to the quantitative assessment of serviceability enhancement provided by vibration control. This study accordingly proposed and evaluated a serviceability assessment method for stay cables equipped with vibration control. Cable serviceability failure was defined according to the range of acceptable cable responses provided in most bridge design codes. The cable serviceability failure probability was then determined by means of the first-passage problem using VanMarcke’s approximation. The proposed approach effectively allows the probability of serviceability failure to be calculated depending on the properties of any installed vibration control method. To demonstrate the proposed method, the stay cables of the Second Jindo Bridge in South Korea were evaluated and the analysis results accurately reflected cable behavior during a known wind event and show that the appropriate selection of vibration control method and properties can effectively reduce the probability of serviceability failure.


2013 ◽  
Vol 361-363 ◽  
pp. 1402-1405
Author(s):  
Zhi Hao Wang

Effective vibration control technology for stay cables is extremely critical to safe operations of cable-stayed bridges. For super-long cables, passive linear damper cannot provide sufficient damping since it can be only optimum for a given mode of cable, while a long cable may vibrate with several modes. This paper focuses on multi-mode vibration control of stay cables with passive magnetorheological (MR) dampers. Firstly, a 21.6m-long model cable was designed and established in the laboratory.Then, control performance of the cable with a passive MR damper was tested. The test results show that modal damping ratios of the cable in the first four modes can be improved significantly with the MR damper. It is further demonstrated that optimal tuned passively operated MR damper can outperform the passive viscous damper.


2011 ◽  
Vol 15 (5) ◽  
pp. 841-847 ◽  
Author(s):  
Inho Hwang ◽  
Jong Seh Lee ◽  
Huseok Lee

Sign in / Sign up

Export Citation Format

Share Document