scholarly journals A synthetic mRNA cell reprogramming method using CYCLIN D1 promotes DNA repair, generating improved genetically stable human induced pluripotent stem cells

Stem Cells ◽  
2021 ◽  
Vol 39 (7) ◽  
pp. 866-881
Author(s):  
Ana Belén Alvarez-Palomo ◽  
Jordi Requena-Osete ◽  
Raul Delgado-Morales ◽  
Victoria Moreno-Manzano ◽  
Carme Grau-Bove ◽  
...  
Acta Naturae ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 92-97
Author(s):  
V. V. Sherstyuk ◽  
G. I. Davletshina ◽  
Y. V. Vyatkin ◽  
D. N. Shtokalo ◽  
V. V. Vlasov ◽  
...  

Reprogramming of somatic cells to a pluripotent state is a complex, multistage process that is regulated by many factors. Among these factors, non-coding RNAs and microRNAs (miRNAs) have been intensively studied in recent years. MiRNAs play an important role in many processes, particularly in cell reprogramming. In this study, we investigated the reprogramming of rat fibroblasts with a deleted locus encoding a cluster comprising 14 miRNAs (from miR-743a to miR-465). The deletion of this locus was demonstrated to decrease significantly the efficiency of the cell reprogramming. In addition, the cells produced by the reprogramming differed from rat embryonic and induced pluripotent stem cells, which was an indication that reprogramming in these cells had not been completed. We suggest that this miRNA cluster or some of its members are involved in regulating the reprogramming of rat cells to a pluripotent state.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1848
Author(s):  
Mirae Kim ◽  
Seon-Ung Hwang ◽  
Junchul David Yoon ◽  
Yeon Woo Jeong ◽  
Eunhye Kim ◽  
...  

Canine induced pluripotent stem cells (ciPSCs) can provide great potential for regenerative veterinary medicine. Several reports have described the generation of canine somatic cell-derived iPSCs; however, none have described the canine somatic cell reprogramming using a non-integrating and self-replicating RNA transfection method. The purpose of this study was to investigate the optimal strategy using this approach and characterize the transition stage of ciPSCs. In this study, fibroblasts obtained from a 13-year-old dog were reprogrammed using a non-integrating Venezuelan equine encephalitis (VEE) RNA virus replicon, which has four reprogramming factors (collectively referred to as T7-VEE-OKS-iG and comprised of hOct4, hKlf4, hSox2, and hGlis1) and co-transfected with the T7-VEE-OKS-iG RNA and B18R mRNA for 4 h. One day after the final transfection, the cells were selected with puromycin (0.5 µg/mL) until day 10. After about 25 days, putative ciPSC colonies were identified showing TRA-1-60 expression and alkaline phosphatase activity. To determine the optimal culture conditions, the basic fibroblast growth factor in the culture medium was replaced with a modified medium supplemented with murine leukemia inhibitory factor (mLIF) and two kinase inhibitors (2i), PD0325901(MEK1/2 inhibitor) and CHIR99021 (GSK3β inhibitor). The derived colonies showed resemblance to naïve iPSCs in their morphology (dome-shaped) and are dependent on mLIF and 2i condition to maintain an undifferentiated phenotype. The expression of endogenous pluripotency markers such as Oct4, Nanog, and Rex1 transcripts were confirmed, suggesting that induced ciPSCs were in the late intermediate stage of reprogramming. In conclusion, the non-integrating and self-replicating VEE RNA replicon system can potentially make a great contribution to the generation of clinically applicable ciPSCs, and the findings of this study suggest a new method to utilize the VEE RNA approach for canine somatic cell reprogramming.


Cell Research ◽  
2011 ◽  
Vol 22 (1) ◽  
pp. 168-177 ◽  
Author(s):  
Athanasia D Panopoulos ◽  
Oscar Yanes ◽  
Sergio Ruiz ◽  
Yasuyuki S Kida ◽  
Dinh Diep ◽  
...  

2017 ◽  
Vol 8 (2) ◽  
pp. 432-445 ◽  
Author(s):  
Daniel Gómez-Cabello ◽  
Cintia Checa-Rodríguez ◽  
María Abad ◽  
Manuel Serrano ◽  
Pablo Huertas

Sign in / Sign up

Export Citation Format

Share Document