rna transfection
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 28)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhiran Qin ◽  
Yangyang Chen ◽  
Jianhai Yu ◽  
Xiaoen He ◽  
Xuling Liu ◽  
...  

Zika virus (ZIKV) has had detrimental effects on global public health in recent years. This is because the management of the disease has been limited, in part because its pathogenic mechanisms are not yet completely understood. Infectious clones are an important tool that utilize reverse genetics; these can be used to modify the ZIKV genomic RNA at the DNA level. A homologous recombination clone was used to construct pWSK29, a low copy plasmid that contained sequences for a T7 promoter, the whole genome of ZIKV ZKC2 strain, and a hepatitis delta virus ribozyme. High fidelity PCR was then used to amplify the T7 transcription template. The transcript was then transfected into susceptible cells via lipofection to recover the ZIKV ZKC2 strain. Finally, the virulence of rZKC2 was evaluated both in vitro and in vivo. The rZKC2 was successfully obtained and it showed the same virulence as its parent, the ZIKV ZKC2 strain (pZKC2), both in vitro and in vivo. The 3730 (NS2A-D62G) mutation site was identified as being important, since it had significant impacts on rZKC2 recovery. The 4015 (NS2A, A157V) mutation may reduce virus production by increasing the interferon type I response. In this study, one of the earliest strains of ZIKV that was imported into China was used for infectious clone construction and one possible site for antiviral medication development was discovered. The use of homologous recombination clones, of PCR products as templates for T7 transcription, and of lipofection for large RNA transfection could increase the efficiency of infectious clone construction. Our infectious clone provides an effective tool which can be used to explore the life cycle and medical treatment of ZIKV.


2021 ◽  
Vol 22 (20) ◽  
pp. 11014
Author(s):  
Ryoma Yoneda ◽  
Naomi Ueda ◽  
Riki Kurokawa

Translocated in LipoSarcoma/Fused in Sarcoma (TLS/FUS) is a nuclear RNA binding protein whose mutations cause amyotrophic lateral sclerosis. TLS/FUS undergoes LLPS and forms membraneless particles with other proteins and nucleic acids. Interaction with RNA alters conformation of TLS/FUS, which affects binding with proteins, but the effect of m6A RNA modification on the TLS/FUS–RNA interaction remains elusive. Here, we investigated the binding specificity of TLS/FUS to m6A RNA fragments by RNA pull down assay, and elucidated that both wild type and ALS-related TLS/FUS mutants strongly bound to m6A modified RNAs. TLS/FUS formed cytoplasmic foci by treating hyperosmotic stress, but the cells transfected with m6A-modified RNAs had a smaller number of foci. Moreover, m6A-modified RNA transfection resulted in the cells obtaining higher resistance to the stress. In summary, we propose TLS/FUS as a novel candidate of m6A recognition protein, and m6A-modified RNA fragments diffuse cytoplasmic TLS/FUS foci and thereby enhance cell viability.


2021 ◽  
Author(s):  
Rongli Wang ◽  
Xinyuan Yang

Abstract Background: Premature ovarian failure (POF) is a serious problem for young women who received chemotherapy, and its pathophysiological basis is the dysfunction of granulosa cells. The RNA methylation on the sixth Natom of adenylate (m6A) plays an important role in epigenetic regulation, and previous studies have demonstrated that the fat mass- and obesity-associated (FTO) was decreased in POF and may be a biomarker for the occurrence of POF. Furthermore, to preserve the fertility of these young females, various approaches have been used to prevent chemotherapy-induced ovarian failure, and menstrual-derived stem cells (MenSCs) have been considered as a promising treatment strategy. Here, we aimed to explore the role of FTO in the MenSCs recovering the function of injured granulosa cells.Method: First, the cisplatin was used to make a granulosa cell injury model. Then, the menstrual-derived stem cells (MenSCs)-injured granulosa cells co-culture model and POF mouse model were established in this study to explore the role of FTO. Human ovarian granulosa cell lines (KGN) were used to explore the effect of FTO on cell proliferation and apoptosis. Furthermore, gain- and loss-of-function studies, small interfering RNA transfection, and meclofenamic acid (MA), a highly selective inhibitor of FTO, were also conducted to clarified the regulation mechanism of FTO in granulosa.Results: MenSCs co-culture could improve the function of injured granulosa cells by increasing the expression of FTO. MenSCs transplantation could restore the expression of FTO in the ovary of POF mice. Overexpression of FTO could restore the injured cells’ proliferation and decrease its apoptosis through regulating the expression of BNIP3. Down-regulation of FTO got the opposite results.Conclusion: FTO has a protective effect, which could improve the viability of granulosa cells after cisplatin treatment by decreasing the expression of BNIP3, and it may provide new insight into the therapeutic targets for the cisplatin-induced POF.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 877
Author(s):  
Natalia Teresa Jarzebska ◽  
Mark Mellett ◽  
Julia Frei ◽  
Thomas M. Kündig ◽  
Steve Pascolo

Protamine is a natural cationic peptide mixture mostly known as a drug for the neutralization of heparin and as a compound in formulations of slow-release insulin. Protamine is also used for cellular delivery of nucleic acids due to opposite charge-driven coupling. This year marks 60 years since the first use of Protamine as a transfection enhancement agent. Since then, Protamine has been broadly used as a stabilization agent for RNA delivery. It has also been involved in several compositions for RNA-based vaccinations in clinical development. Protamine stabilization of RNA shows double functionality: it not only protects RNA from degradation within biological systems, but also enhances penetration into cells. A Protamine-based RNA delivery system is a flexible and versatile platform that can be adjusted according to therapeutic goals: fused with targeting antibodies for precise delivery, digested into a cell penetrating peptide for better transfection efficiency or not-covalently mixed with functional polymers. This manuscript gives an overview of the strategies employed in protamine-based RNA delivery, including the optimization of the nucleic acid’s stability and translational efficiency, as well as the regulation of its immunostimulatory properties from early studies to recent developments.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1047
Author(s):  
Ploypailin Semkum ◽  
Challika Kaewborisuth ◽  
Nattarat Thangthamniyom ◽  
Sirin Theerawatanasirikul ◽  
Chalermpol Lekcharoensuk ◽  
...  

Picornaviruses are non-enveloped, single-stranded RNA viruses that cause highly contagious diseases, such as polio and hand, foot-and-mouth disease (HFMD) in human, and foot-and-mouth disease (FMD) in animals. Reverse genetics and minigenome of picornaviruses mainly depend on in vitro transcription and RNA transfection; however, this approach is inefficient due to the rapid degradation of RNA template. Although DNA-based reverse genetics systems driven by mammalian RNA polymerase I and/or II promoters display the advantage of rescuing the engineered FMDV, the enzymatic functions are restricted in the nuclear compartment. To overcome these limitations, we successfully established a novel DNA-based vector, namely pKLS3, an FMDV minigenome containing the minimum cis-acting elements of FMDV essential for intracytoplasmic transcription and translation of a foreign gene. A combination of pKLS3 minigenome and the helper plasmids yielded the efficient production of uncapped-green florescent protein (GFP) mRNA visualized in the transfected cells. We have demonstrated the application of the pKLS3 for cell-based antiviral drug screening. Not only is the DNA-based FMDV minigenome system useful for the FMDV research and development but it could be implemented for generating other picornavirus minigenomes. Additionally, the prospective applications of this viral minigenome system as a vector for DNA and mRNA vaccines are also discussed.


Author(s):  
Natalia Teresa Jarzebska ◽  
Mark Mellett ◽  
Julia Frei ◽  
Thoams M Kuendig ◽  
Steve Pascolo

Protamine is a natural cationic peptide mixture mostly known as a drug for the neutralization of heparin and as a compound in formulations of slow-release insulin. Protamine is also used for cellular delivery of nucleic acids due to opposite charge-driven coupling. This year marks60 years since the first use of Protamine as a transfection enhancement agent. Since then, Protamine has been broadly used as a stabilization agent for RNA delivery. It has also been involved in several compositions for RNA-based vaccinations in clinical development. Protamine stabilization of RNA shows double functionality: it not only protects RNA from degradation within biological systems, but also enhances penetration into cells. A Protamine-based RNA delivery system is a flexible and versatile platform that can be adjusted according to therapeutic goals: fused with targeting antibodies for precise delivery, digested into a cell penetrating peptide for better transfection efficiency or not-covalently mixed with functional polymers. This manuscript gives an overview of the strategies employed in protamine-based RNA delivery, including the optimization of the nucleic acid’s stability and translational efficiency, as well as the regulation of its immunostimulatory properties from early studies to recent developments.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009421
Author(s):  
Shuliang Chen ◽  
Sameer Kumar ◽  
Constanza E. Espada ◽  
Nagaraja Tirumuru ◽  
Michael P. Cahill ◽  
...  

N6-methyladenosine (m6A) is a prevalent RNA modification that plays a key role in regulating eukaryotic cellular mRNA functions. RNA m6A modification is regulated by two groups of cellular proteins, writers and erasers that add or remove m6A, respectively. HIV-1 RNA contains m6A modifications that modulate viral infection and gene expression in CD4+ T cells. However, it remains unclear whether m6A modifications of HIV-1 RNA modulate innate immune responses in myeloid cells that are important for antiviral immunity. Here we show that m6A modification of HIV-1 RNA suppresses the expression of antiviral cytokine type-I interferon (IFN-I) in differentiated human monocytic cells and primary monocyte-derived macrophages. Transfection of differentiated monocytic U937 cells with HIV-1 RNA fragments containing a single m6A-modification significantly reduced IFN-I mRNA expression relative to their unmodified RNA counterparts. We generated HIV-1 with altered m6A levels of RNA by manipulating the expression of the m6A erasers (FTO and ALKBH5) or pharmacological inhibition of m6A addition in virus-producing cells, or by treating HIV-1 RNA with recombinant FTO in vitro. HIV-1 RNA transfection or viral infection of differentiated U937 cells and primary macrophages demonstrated that HIV-1 RNA with decreased m6A levels enhanced IFN-I expression, whereas HIV-1 RNA with increased m6A modifications had opposite effects. Our mechanistic studies indicated that m6A of HIV-1 RNA escaped retinoic acid-induced gene I (RIG-I)-mediated RNA sensing and activation of the transcription factors IRF3 and IRF7 that drive IFN-I gene expression. Together, these findings suggest that m6A modifications of HIV-1 RNA evade innate immune sensing in myeloid cells.


2020 ◽  
Author(s):  
xin Wu ◽  
Jia-ming Liu ◽  
Honghai Song ◽  
Qikun Yang ◽  
Hui Ying ◽  
...  

Abstract Background: Autophagy plays an essential role in metastasis of malignancies. Although our studies showed that Aurora-B facilitate pulmonary metastasis in OS, the mechanism of Aurora-B kinase on autophagy and metastasis in OS has not been explored.Methods: Clinical-pathological parameters and follow-up information was collected in OS patients. Immunohistochemical staining was performed to detect Aurora-B and LC3 protein in OS tissues. Short hairpin RNA transfection was used to silence Aurora-B in OS cells. Real-time quantitative PCR (RT-qPCR) was performed to detect Aurora-B mRNA expression in OS cells. Aurora-B and autophagy related protein were measured by Western blot. Transmission electron microscopy and laser scanning confocal microscopy were performed to observe the formation of autophagosomes and autolysosomes. Migratory and invasive ability of OS cells were measured by Wound healing and transwell assays. Orthotopic xenograft model was used to evaluate the effect of autophagy mediated by Aurora-B inhibition on pulmonary metastasis of OS. Results: The elevated expression of Aurora-B protein in OS tissues negatively associated with the overall survival of OS patients. Further investigation has found that Aurora-B expression was negatively correlative with autophagy related protein LC3 in OS patient tissues. Knockdown Aurora-B stimulates autophagy and inhibits migratory and invasive ability of OS cells. Mechanistically, Aurora-B knockdown suppressed the mTOR/ULK1 signaling pathway and reactivation of the mTOR/ULK1 pathway decreased autophagy level. Furthermore, the inhibition effect of silencing Aurora-B on migration and invasion of OS was reversed by chloroquine and mTOR activator in vitro and vivo. Conclusions: Our results suggest that silencing of Aurora-B stimulate autophagy via decreasing mTOR/ULK1 and result in inhibiting OS metastasis. Targeted Aurora-B/mTOR/ULK1 pathway may be a promising treatment strategy for OS patients.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xin Wu ◽  
Jia-ming Liu ◽  
Hong-hai Song ◽  
Qi-kun Yang ◽  
Hui Ying ◽  
...  

Abstract Background Autophagy plays an essential role in metastasis of malignancies. Although our studies showed that Aurora-B facilitate pulmonary metastasis in OS, the mechanism of Aurora-B kinase on autophagy and metastasis in OS has not been explored. Methods Clinical-pathological parameters and follow-up information was collected in OS patients. Immunohistochemical staining was performed to detect Aurora-B and LC3 protein in OS tissues. Short hairpin RNA transfection was used to silence Aurora-B in OS cells. Real-time quantitative PCR (RT-qPCR) was performed to detect Aurora-B mRNA expression in OS cells. Aurora-B and autophagy related protein were measured by Western blot. Transmission electron microscopy and laser scanning confocal microscopy were performed to observe the formation of autophagosomes and autolysosomes. Migratory and invasive ability of OS cells were measured by Wound healing and transwell assays. Orthotopic xenograft model was used to evaluate the effect of autophagy mediated by Aurora-B inhibition on pulmonary metastasis of OS. Results The elevated expression of Aurora-B protein in OS tissues negatively associated with the overall survival of OS patients. Further investigation has found that Aurora-B expression was negatively correlative with autophagy related protein LC3 in OS patient tissues. Knockdown Aurora-B stimulates autophagy and inhibits migratory and invasive ability of OS cells. Mechanistically, Aurora-B knockdown suppressed the mTOR/ULK1 signaling pathway and reactivation of the mTOR/ULK1 pathway decreased autophagy level. Furthermore, the inhibition effect of silencing Aurora-B on migration and invasion of OS was reversed by chloroquine and mTOR activator in vitro and vivo. Conclusions Our results suggest that silencing of Aurora-B stimulate autophagy via decreasing mTOR/ULK1 and result in inhibiting OS metastasis. Targeted Aurora-B/mTOR/ULK1 pathway may be a promising treatment strategy for OS patients.


Sign in / Sign up

Export Citation Format

Share Document