Sexual experience alters D1 receptor-mediated cyclic AMP production in the nucleus accumbens of female Syrian hamsters

Synapse ◽  
2004 ◽  
Vol 53 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Katherine C. Bradley ◽  
Amanda J. Mullins ◽  
Robert L. Meisel ◽  
Val J. Watts
2022 ◽  
Author(s):  
Bridget A Matikainen-Ankney ◽  
Alex A Legaria ◽  
Yvan M Vachez ◽  
Caitlin A Murphy ◽  
Yiyan A Pan ◽  
...  

Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. In addition to homeostatic feeding mechanisms, there is growing recognition of the involvement of food reward and motivation in the development of obesity. However, it remains unclear how brain circuits that control food reward and motivation are altered in obese animals. Here, we tested the hypothesis that signaling through pro-motivational circuits in the core of the nucleus accumbens (NAc) is enhanced in the obese state, leading to invigoration of food seeking. Using a novel behavioral assay that quantifies physical work during food seeking, we confirmed that obese mice work harder than lean mice to obtain food, consistent with an increase in the relative reinforcing value of food in the obese state. To explain this behavioral finding, we recorded neural activity in the NAc core with both in vivo electrophysiology and cell-type specific calcium fiber photometry. Here we observed greater activation of D1-receptor expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. With ex vivo slice physiology we identified both pre- and post-synaptic mechanisms that contribute to this enhancement in NAc D1SPN activity in obese mice. Finally, blocking synaptic transmission from D1SPNs decreased physical work during food seeking and attenuated high-fat diet-induced weight gain. These experiments demonstrate that obesity is associated with a selective increase in the activity of D1SPNs during food seeking, which enhances the vigor of food seeking. This work also establishes the necessity of D1SPNs in the development of diet-induced obesity, identifying a novel potential therapeutic target.


1985 ◽  
Vol 54 (6) ◽  
pp. 1568-1577 ◽  
Author(s):  
J. F. DeFrance ◽  
R. W. Sikes ◽  
R. B. Chronister

The action of dopamine was studied in the nucleus accumbens of acutely prepared rabbits. Dopamine was applied iontophoretically to those cells and cell populations that responded in a monosynaptic excitatory manner to ipsilateral fimbrial stimulation. This strategy was adopted to isolate the effects of dopamine on postsynaptic receptors thus avoiding the bias resulting from activation of presynaptic dopamine receptors on dopaminergic afferents. Dopamine was found to have a suppressive effect on the excitatory (N) component of the field response and on driven extracellular unitary discharges. The specificity of dopamine's effect with receptors was indicated by the facts that fluphenazine effectively antagonized dopamine's effect, whereas bicuculline did not. The effect of dopamine was dependent on the rate of fimbrial stimulation. Dopamine has a marked suppressive effect on the fimbria-induced response at 0.5 Hz of stimulation but not at 6.0 Hz. This frequency specificity could not be linked directly to a cyclic adenosine 3',5'-cyclic monophosphate (cyclic AMP) mechanism because the iontophoresis cyclic AMP and dibutyryl cyclic AMP had suppressive effects at both 0.5 and 6.0 Hz rates of stimulation. It is suggested that dopamine acts in the nucleus accumbens to increase the "signal-to-noise" ratio. This might be a form of "contrast enhancement" of an incoming hippocampal message.


2011 ◽  
Vol 216 (2) ◽  
pp. 219-233 ◽  
Author(s):  
Jeffrey W. Grimm ◽  
John H. Harkness ◽  
Christine Ratliff ◽  
Jesse Barnes ◽  
Kindsey North ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document