Propofol alleviates neuropathic pain in CCI rat models via the miR‐140‐3p/JAG1/Notch signaling pathway

Synapse ◽  
2021 ◽  
Author(s):  
Fang Cheng ◽  
Wei Qin ◽  
Ai‐xing Yang ◽  
Feng‐feng Yan ◽  
Yu Chen ◽  
...  
2012 ◽  
Vol 5 (1) ◽  
pp. 23 ◽  
Author(s):  
Yan-Yan Sun ◽  
Li Li ◽  
Xiao-Hua Liu ◽  
Nan Gu ◽  
Hai-Long Dong ◽  
...  

2021 ◽  
Author(s):  
Fang Cheng ◽  
Wei Qin ◽  
Ai-xing Yang ◽  
Feng-feng Yan ◽  
Yu chen ◽  
...  

Abstract As a renowned anesthetic, propofol exerts excellent analgesic function in nerve injury. However, the underlying mechanism of propofol on neuropathic pain (NP) remains unknown. The research aims to analyze propofol’s analgesia mechanism to alleviate NP in CCI rats. The chronic constriction injury (CCI) of sciatic nerve was used to established NP rat models. CCI rats were treated with propofol and its paw withdrawal mechanical threshold (PMWT) and paw withdraw thermal latency (PWTL) were measured. The expressions of TNF-α, IL-1β and IL-10 were detected. CCI rats with propofol treatment were injected with antagomiR-140-3p. After the targeting relationship between miR-140-3p and JAG1 was checked, JAG1 expression was detected. Propofol-treated CCI rats were further injected with Ad-JAG1. Finally, the levels of JAG1 and Notch pathway-related proteins were detected. As a result, propofol could alleviate NP, including thermal hyperalgesia and mechanical pain threshold, and ameliorate neuroinflammation. Mechanically, propofol enhanced the level of miR-140-3p in CCI rats. JAG1 was a direct target of miR-140-3p. The downregulation of miR-140-3p or upregulation of JAG1 could reduce the protective effect of propofol against NP. Propofol inhibited activation of Notch signaling via miR-140-3p/JAG1. Overall, Propofol could inhibit the neuroinflammation and Notch signaling pathway via miR-140-3p/JAG1 to alleviate NP.


2013 ◽  
Vol 13 (9) ◽  
pp. 957-962 ◽  
Author(s):  
Yumei Li ◽  
Jia Ma ◽  
Xiujuan Qian ◽  
Qiong Wu ◽  
Jun Xia ◽  
...  

Author(s):  
Imran Khan ◽  
Sadaf Mahfooz ◽  
Mohd Saeed ◽  
Irfan Ahmad ◽  
Irfan A. Ansari

Background: Recently Notch signaling pathway has gained attention as a potential therapeutic target for chemotherapeutic intervention. However, the efficacy of previously known Notch inhibitors in colon cancer is still unclear. The purpose of this study was to investigate the effect of andrographolide on aberrantly activated Notch signaling in SW-480 cells in vitro. Methods: The cytostatic potential of andrographolide on SW-480 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay, morphology assessment and colony formation assay. The apoptotic activity was evaluated by FITC Annexin V assay, 4′,6-diamidino-2-phenylindole (DAPI), Hoechst, Rhodamine 123 and Mito Tracker CMXRos staining. Scratch assay for migratory potential assessment. 7’-Dichlorodihydrofluorescein Diacetate (DCFH-DA) staining was used to evaluate the Reactive Oxygen Species (ROS) generation. Relative mRNA expression of Bax, Bcl2, NOTCH 1 and JAGGED 1 was estimated by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Cell cycle phase distribution was evaluated Annexin V-FITC/PI staining. Results: MTT assay demonstrated dose and time dependent cytoxicity of andrographolide on SW-480 cells. It also inhibited the migratory and colony forming potential of SW-480 cells. Furthermore, andrographolide also showed disruption of mitochondrial membrane potential and induced apoptosis through nuclear condensation. Flow cytometric evaluation showed andrographolide enhanced early and late apoptotic cells and induced upregulation of proapoptotic (Bax and Bad) and downregulation of antiapoptotic Bcl2 in treated SW-480 cells. Andrographolide augmented intracellular ROS generation and induced G0/G1 phase cell cycle arrest in colon cancer SW480 cells. Furthermore, andrographolide repressed the Notch signaling by decreasing the expression of NOTCH 1 and JAGGED 1. Conclusion: Our findings suggested that andrographolide constraint the growth of SW-480 cells through the inhibition of Notch signaling pathway.


2021 ◽  
Vol 70 (3) ◽  
pp. 261-274
Author(s):  
Ricardo Cardoso Castro ◽  
Relber Aguiar Gonçales ◽  
Fabiana Albani Zambuzi ◽  
Fabiani Gai Frantz

Blood ◽  
2011 ◽  
Vol 118 (5) ◽  
pp. 1264-1273 ◽  
Author(s):  
Melanie G. Cornejo ◽  
Vinciane Mabialah ◽  
Stephen M. Sykes ◽  
Tulasi Khandan ◽  
Cristina Lo Celso ◽  
...  

Abstract The NOTCH signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. However, the molecular basis for its role at the different steps of stem cell lineage commitment is unclear. We recently identified the NOTCH signaling pathway as a positive regulator of megakaryocyte lineage specification during hematopoiesis, but the developmental pathways that allow hematopoietic stem cell differentiation into the erythro-megakaryocytic lineages remain controversial. Here, we investigated the role of downstream mediators of NOTCH during megakaryopoiesis and report crosstalk between the NOTCH and PI3K/AKT pathways. We demonstrate the inhibitory role of phosphatase with tensin homolog and Forkhead Box class O factors on megakaryopoiesis in vivo. Finally, our data annotate developmental mechanisms in the hematopoietic system that enable a decision to be made either at the hematopoietic stem cell or the committed progenitor level to commit to the megakaryocyte lineage, supporting the existence of 2 distinct developmental pathways.


Sign in / Sign up

Export Citation Format

Share Document