Optimum design of active/passive control devices for tall buildings under earthquake excitation

2002 ◽  
Vol 11 (2) ◽  
pp. 109-127 ◽  
Author(s):  
Y.L. Xu ◽  
J. Teng
Author(s):  
BG Kavyashree ◽  
Shantharam Patil ◽  
Vidya S. Rao

AbstractPermanent construction has evolved from the Palaeolithic age to today’s skyscrapers. Constructing the structure, which promises occupants safety, has become a concern because of the uncertainties in nature. Therefore in recent years, attention has been given to the development of structural protective devices that could take care of the external loads. Structural control against the wind and earthquake load has been seriously studied where the structure behaves differently for wind and earthquake load has been briefly discussed in this paper. Initially, paper discusses the history of the construction and the passive control system, which was used in structural control, is briefly discussed in this paper. Also, the implementation of active control has been discussed which was introduced later in the structural control for more effective control. But the limitations of the passive and active control system have introduced semi-active control and also the hybrid control strategy. The two mechanisms are put together in the semi-active and hybrid system to obtain all advantages of the algorithm along with overcoming their limitations. The review also briefs about stochastic vibrational control of the structure where randomness is considered in external loads, parameter of the system and also in the external devices which are implemented in the structural control. As construction sector is a complex system, big data analysis, a new field in structural control system is discussed and future scope is also mentioned.


2007 ◽  
Vol 353-358 ◽  
pp. 2652-2655 ◽  
Author(s):  
Ki Pyo You ◽  
Young Moon Kim ◽  
Cheol Min Yang ◽  
Dong Pyo Hong

Wind-induced vibration of tall buildings have been of interest in engineering for a long time. Wind-induced vibration of a tall building can be most effectively controlled by using passive control devices. The tuned liquid damper(TLD) is kind of a passive mechanical damper, which relies on the sloshing liquid in a rigid tank. TLD has been successfully employed in practical mitigation of undesirable structural vibrations because it has several potential advantages: low costs, easy installation in existing structures, and effectiveness even against small-amplitude vibrations. Shaking table experiments were conducted to investigate the characteristics of the shallow water sloshing motion in a rectangular tank. To increase the damping ratio of the rectangular water tank, triangle sticks were installed at the bottom of water tank. This installation increased the damping ratio by amaximum of 40-70%.


2004 ◽  
Vol 10 (7) ◽  
pp. 1041-1056 ◽  
Author(s):  
Hong-Nan Li ◽  
Ying Jia ◽  
Su-Yan Wang

This paper focuses on the use of multiple tuned liquid dampers (TLDs) as passive control devices to reduce the multi-modal responses of tall buildings and high-rise structures to earthquake ground motion excitation. A model of a three-story building with one and two TLDs was installed on a shaking-table. The system was subjected to three earthquake time histories. Then, the mechanical models and the equations of motion for the systems of tall buildings and high-rise structures with TLDs are established. Here, the solution of the dynamic liquid pressure is based on the method of the volume of fluid and the seismic responses are obtained by use of the state equation. The comparisons show that theoretical results are generally in good agreement with experiments. It is observed that the approach presented in this paper has proved to be quite effective both in the numerical example and in the seismic simulating tests.


Sign in / Sign up

Export Citation Format

Share Document