Effects of electrical stimulation on autonomous electrical activity in a cultured rat hippocampal neuronal network

2011 ◽  
Vol 6 (2) ◽  
pp. 163-167 ◽  
Author(s):  
Ai Kiyohara ◽  
Takahisa Taguchi ◽  
Suguru N. Kudoh
1969 ◽  
Vol 51 (2) ◽  
pp. 387-396
Author(s):  
I. D. MCFARLANE

1. Electrical activity has been recorded from the sphincter region of Calliactis parasitica during the behavioural sequence in which the anemone detaches from the substrate and attaches to a Buccinum shell. The ectodermal slow-conduction system (SS1) fires repetitively, the majority of observed pulses occurring in the period prior to detachment (a typical example is 25 SS1pulses at an average frequency of 1 pulse/7 sec.). Shell-tentacle contact is essential for stimulation of SS1activity. 2. Mechanical stimulation of the column excites the SS1, and 30 stimuli at a frequency of about one shock/5 sec. give pedal disk detachment. 3. Electrical stimulation of the ectoderm excites the SS1and about 30 stimuli at frequencies between one shock/3 sec. and one shock/9 sec. produce detachment. Detachment and the SS1 have an identical stimulus threshold. It is concluded that detachment is co-ordinated by the SS1.


1968 ◽  
Vol 49 (2) ◽  
pp. 387-400
Author(s):  
G. O. MACKIE

1. Cordylophora has two major hydranth pacemaker systems, one producing slow,, biphasic pulses at 2.0-4.0 sec. intervals (slow pulse or SP system) and one exhibiting sharp, predominantly negative potentials singly or in bursts with a normal interval of 1.5-2.0 sec. between pulses (fast pulses, FPs). 2. Both SPs and FPs are recorded throughout the hydranth, but do not spread to and are not co-ordinated in adjacent hydranths. 3. SPs could not consistently be evoked artificially and showed no clear behavioural correlates. FPs occur during feeding and following electrical stimulation, where they may accompany a muscle response. 4. FPs appear superimposed on SPs when both systems are active. Such a composite event advances the SP rhythm by an amount close to the normal FP inter-pulse time, but compensatory adjustment of the SP rhythm then occurs. 5. Treatment with 10-5 g./ml. tetrodotoxin has no apparent effect on Cordylophora.


Author(s):  
Suguru N. Kudoh

A neurorobot is a model system for biological information processing with vital components and the artificial peripheral system. As a central processing unit of the neurorobot, a dissociated culture system possesses a simple and functional network comparing to a whole brain; thus, it is suitable for exploration of spatiotemporal dynamics of electrical activity of a neuronal circuit. The behavior of the neurorobot is determined by the response pattern of neuronal electrical activity evoked by a current stimulation from outer world. “Certain premise rules” should be embedded in the relationship between spatiotemporal activity of neurons and intended behavior. As a strategy for embedding premise rules, two ideas are proposed. The first is “shaping,” by which a neuronal circuit is trained to deliver a desired output. Shaping strategy presumes that meaningful behavior requires manipulation of the living neuronal network. The second strategy is “coordinating.” A living neuronal circuit is regarded as the central processing unit of the neurorobot. Instinctive behavior is provided as premise control rules, which are embedded into the relationship between the living neuronal network and robot. The direction of self-tuning process of neurons is not always suitable for desired behavior of the neurorobot, so the interface between neurons and robot should be designed so as to make the direction of self-tuning process of the neuronal network correspond with desired behavior of the robot. Details of these strategies and concrete designs of the interface between neurons and robot are be introduced and discussed in this chapter.


1977 ◽  
Vol 69 (1) ◽  
pp. 23-32
Author(s):  
M. Peters

1. Innervation and some electrical properties of the locust ventral diaphragm were investigated with electrophysiological and histological methods. 2. Muscle fibres are coupled electrically. Electrical stimulation evokes a graded active membrane response. 3. Each segment is innervated by four motor neurones as follows. Two motor neurones are situated in each abdominal ganglion. Branches of their axons supply the ventral diaphragm in the respective and the next posterior segment. 4. This pattern of innervation was confirmed by axonal Co and Ni staining of the motor nerve endings. 5. Neuromuscular junctions are excitatory. EPSPs show summation but no facilitation. 6. Spontaneous electrical activity of the diaphragm is to a certain degree coupled to activity of the main inspiratory muscles.


1976 ◽  
Vol 64 (2) ◽  
pp. 419-429
Author(s):  
I. D. Lawn

1. Electrical activity has been recorded from Stomphia coccinea during the behavioural sequence in which the detached anemone settles on to a Modiolus shell. 2. When a responsive tentacle contacts the shell, a short, complex burst of pulses is elicited. These remain confined to the region of contact. The endodermal slow-conduction system (SS2) then begins to fire repetitively (a typical example is 16 SS2 pulses at a mean interpulse interval of 5 s) until the pedal disc begins to inflate. Shell-tentacle contact is essential for stimulation of SS2 activity. 3. The complete response, apart from local bending of the column, may be reproduced by electrical stimulation of the SS2 alone. As few as 10 stimuli at frequencies between 1 shock/s and 1 shock/10 s are required to elicit the response.


2012 ◽  
Vol 02 (03) ◽  
pp. 14-15
Author(s):  
Subramanya K. ◽  
Ajithanjaya Kumar Mijar Kanakabettu

AbstractOne of the most exciting recent advances in the neuroprosthetics field has been the application of biosignals in the design of functional electrical stimulation (FES) devices. An Electromyogram (EMG) measures the electrical activity in muscles and is often considered as ideal candidate biosignal for designing closed-loop controlled FES system. In this brief communication, we propose a novel design paradigm of a synergistic benefit of incorporating two different design principles in development of an EMG controlled FES system that hold promise for the future of rehabilitation of stroke and other neurological disorders. The proposed system will detect the residual EMG signals from the muscle and suitably adjust the stimulation current amplitude and stimulate the paralyzed muscles with a 'natural' EMG pattern envelope. We offer this design as a fruitful area for fuing recent advances in the neuroprosthetics field has been the application of biosignals in the design of functional electrical stimulation (FES) devices. An Electromyogram (EMG) measures the electrical activity in muscles and is often considered as ideal candidate biosignal for designing closed-loop controlled FES system. In this brief communication, we propose a novel design paradigm of a synergistic benefit of incorporating two different design principles in development of an EMG controlled FES system that hold promise for the future of rehabilitation of stroke and other neurological disorders. The proposed system will detect the residual EMG signals from the muscle and suitably adjust the stimulation current amplitude and stimulate the paralyzed muscles with a 'natural' EMG pattern envelope. We offer this design as a fruitful area for future research and clinical application.


Sign in / Sign up

Export Citation Format

Share Document