scholarly journals The combined effects of three-dimensional cell culture and natural tissue extract on neural differentiation of P19 embryonal carcinoma stem cells

2018 ◽  
Vol 12 (9) ◽  
pp. 1909-1924 ◽  
Author(s):  
Faezeh Azizi ◽  
Hamidreza Jalil ◽  
Zohreh Nasiri ◽  
Jamal Moshtaghian ◽  
Fariba Esmaeili ◽  
...  



2019 ◽  
Vol 2 (4) ◽  
pp. 370-381
Author(s):  
Zahra Hesari ◽  
Fatemeh Mottaghitalab ◽  
Akram Shafiee ◽  
Masoud Soleymani ◽  
Rasoul Dinarvand ◽  
...  

Neural differentiation of stem cells is an important issue in development of central nervous system. Different methods such as chemical stimulation with small molecules, scaffolds, and microRNA can be used for inducing the differentiation of neural stem cells. However, microfluidic systems with the potential to induce neuronal differentiation have established their reputation in the field of regenerative medicine. Organization of microfluidic system represents a novel model that mimic the physiologic microenvironment of cells among other two and three dimensional cell culture systems. Microfluidic system has patterned and well-organized structure that can be combined with other differentiation techniques to provide optimal conditions for neuronal differentiation of stem cells. In this review, different methods for effective differentiation of stem cells to neuronal cells are summarized. The efficacy of microfluidic systems in promoting neuronal differentiation is also addressed.



2011 ◽  
Vol 28 (7) ◽  
pp. 1577-1590 ◽  
Author(s):  
Cai-Xia He ◽  
Ni Li ◽  
Yu-Lan Hu ◽  
Xiu-Mei Zhu ◽  
Hai-Jie Li ◽  
...  


2019 ◽  
Author(s):  
Tiffany Miller

<p>Bone marrow derived stem cells express biomarkers capable of facilitating adhesion to the cell culturing microenvironment, thereby, influencing their proliferation, migration, and differentiation. In particular, biological biomarkers of mesenchymal stem cells include, but are not limited to, CD14-, CD19-, CD34-, CD45-, CD29, CD44, CD73+, CD90+, CD105+, CD106, CD166, Stro-1, and HLADR. The relationship between the stem cell biology and the materials and methods forming a cell culturing microenvironment serves as a critical aspect in the successful adhesion and growth within two-dimensional cell culture microenvironments such as polystyrene, laminin, fibronectin, or poly-L-lysine and within three-dimensional cell culture microenvironments such as hydrogel, ceramic, collagen, polymer based nanofibers, agitation, forced floating, and hang drop systems. Further, electrical stimulation of the stem cells may be implemented during the cell culturing process to measure stem cell growth and to determine stem cell viability. In addition, electrical stimulation of implanted stem cells may facilitate tracking by measuring stem cell migration distance and travel area. Although many biochemical and inflammatory biomarkers are expressed based on severity in stroke including, but not limited to, Interluken-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and glutamate (Glu), current methodologies of stem cell directing lack localization and biological effector specificity. Biological effector bound magnetic particle stem cells may serve as a potential treatment method in ischemic stroke. In particular, a stem cell biomarker may be configured to communicate with inflammatory biomarkers, thus, more efficiently delivering the stem cells to site specific areas having the most severely affected <i>in-vivo</i> biochemical microenvironments.</p>



2019 ◽  
Author(s):  
Tiffany Miller

<p>Bone marrow derived stem cells express biomarkers capable of facilitating adhesion to the cell culturing microenvironment, thereby, influencing their proliferation, migration, and differentiation. In particular, biological biomarkers of mesenchymal stem cells include, but are not limited to, CD14-, CD19-, CD34-, CD45-, CD29, CD44, CD73+, CD90+, CD105+, CD106, CD166, Stro-1, and HLADR. The relationship between the stem cell biology and the materials and methods forming a cell culturing microenvironment serves as a critical aspect in the successful adhesion and growth within two-dimensional cell culture microenvironments such as polystyrene, laminin, fibronectin, or poly-L-lysine and within three-dimensional cell culture microenvironments such as hydrogel, ceramic, collagen, polymer based nanofibers, agitation, forced floating, and hang drop systems. Further, electrical stimulation of the stem cells may be implemented during the cell culturing process to measure stem cell growth and to determine stem cell viability. In addition, electrical stimulation of implanted stem cells may facilitate tracking by measuring stem cell migration distance and travel area. Although many biochemical and inflammatory biomarkers are expressed based on severity in stroke including, but not limited to, Interluken-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and glutamate (Glu), current methodologies of stem cell directing lack localization and biological effector specificity. Biological effector bound magnetic particle stem cells may serve as a potential treatment method in ischemic stroke. In particular, a stem cell biomarker may be configured to communicate with inflammatory biomarkers, thus, more efficiently delivering the stem cells to site specific areas having the most severely affected <i>in-vivo</i> biochemical microenvironments.</p>



2018 ◽  
Vol 19 (4) ◽  
pp. 1091-1099 ◽  
Author(s):  
Ciqing Tong ◽  
Tingxian Liu ◽  
Victorio Saez Talens ◽  
Willem E. M. Noteborn ◽  
Thomas H. Sharp ◽  
...  


2011 ◽  
Vol 7 (1) ◽  
Author(s):  
Jörg Handschel ◽  
Christian Naujoks ◽  
Rita Depprich ◽  
Lydia Lammers ◽  
Norbert Kübler ◽  
...  


1989 ◽  
Vol 67 (9) ◽  
pp. 537-544 ◽  
Author(s):  
Marcia M. Falconer ◽  
Ursula Vielkind ◽  
David L. Brown

Pluripotent P19 embryonal carcinoma cell cultures can be induced to differentiate into neurons and glial cells by the addition of 10−6 M retinoic acid. During early neural differentiation, a bundle of colchicine-stable, acetylated microtubules is formed. This acetylated microtubule array apparently extends to form neurites during neurogenesis. In this paper, we analyze changes in vimentin and MAP 2 distributions during neural differentiation with respect to the changes in the acetylated microtubule array. During a brief period early in differentiation, indirect immunofluorescence staining shows the colocalization of colchicine-stable acetylated microtubules, vimentin, and MAP 2. Using acrylamide to disrupt the organization of vimentin intermediate filaments and estramustine to disrupt the binding of MAP 2 to microtubules, we show that acetylated microtubules, MAP 2, and vimentin intermediate filaments are arranged in an interdependent cytoskeletal array. We suggest this array may serve to stabilize processes in neural stem cells, before the final decision to differentiate into neurons or glia is made.Key words: embryonal carcinoma culture, MAP 2, microtubules, neural differentiation, vimentin.



Sign in / Sign up

Export Citation Format

Share Document