cell culturing
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 38)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Christian Lohasz ◽  
Jacqueline Loretan ◽  
Dario Sterker ◽  
Ekkehard Görlach ◽  
Kasper Renggli ◽  
...  

Understanding the pharmacokinetic/pharmacodynamic (PK/PD)-relationship of a drug candidate is key to determine effective, yet safe treatment regimens for patients. However, current testing strategies are inefficient in characterizing in vivo responses to fluctuating drug concentrations during multi-day treatment cycles. Methods based on animal models are resource-intensive and require time, while traditional in vitro cell-culturing methods usually do not provide temporally-resolved information on the effects of in vivo–like drug exposure scenarios. To address this issue, we developed a microfluidic system to 1) culture arrays of three-dimensional spheroids in vitro, to 2) apply specific dynamic drug exposure profiles, and to 3) in-situ analyze spheroid growth and the invoked drug effects in 3D by means of 2-photon microscopy at tissue and single-cell level. Spheroids of fluorescently-labeled T-47D breast cancer cells were monitored under perfusion-culture conditions at short time intervals over three days and exposed to either three 24 h-PK-cycles or a dose-matched constant concentration of the phosphatidylinositol 3-kinase inhibitor BYL719. While the overall efficacy of the two treatment regimens was similar, spheroids exposed to the PK profile displayed cycle-dependent oscillations between regression and regrowth. Spheroids treated with a constant BYL719 concentration regressed at a steady, albeit slower rate. At a single-cell level, the cell density in BYL719-treated spheroids oscillated in a concentration-dependent manner. Our system represents a versatile tool for in-depth preclinical characterization of PK/PD parameters, as it enables an evaluation of drug efficacy and/or toxicity under realistic exposure conditions.


2021 ◽  
Author(s):  
Tatiana Vasilieva ◽  
Tatiana Shikova ◽  
Elena Nikolskaya ◽  
Nikita Yabbarov ◽  
Maria Sokol ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2629
Author(s):  
Pui May Chou ◽  
Poi Sim Khiew ◽  
Paul D Brown ◽  
Binjie Hu

Poly(N-isopropylacrylamide) (polyNIPAm) microspheres were synthesized via the suspension polymerization technique. Thermal and redox initiators were compared for the polymerization, in order to study the effect of initiator type on the surface charge and particle size of polyNIPAm microspheres. The successful polymerization of NIPAm was confirmed by FTIR analysis. Microspheres of diameter >50 µm were synthesized when a pair of ammonium persulfate (APS) and N,N,N’,N’-tetramethylene-diamine (TEMED) redox initiators was used, whilst relatively small microspheres of ~1 µm diameter were produced using an Azobis-isobutyronitrile (AIBN) thermal initiator. Hence, suspension polymerization using a redox initiator pair was found to be more appropriate for the synthesis of polyNIPAm microspheres of a size suitable for human embryonic kidney (HEK) cell culturing. However, the zeta potential of polyNIPAm microspheres prepared using an APS/TEMED redox initiator was significantly more negative than AIBN thermal initiator prepared microspheres and acted to inhibit cell attachment. Conversely, strong cell attachment was observed in the case of polyNIPAm microspheres of diameter ~90 µm, prepared using an APS/TEMED redox initiator in the presence of a cetyl trimethyl ammonium bromide (CTAB) cationic surfactant; demonstrating that surface charge modified polyNIPAm microspheres have great potential for use in cell culturing.


2021 ◽  
Author(s):  
Morteza Jeyhani ◽  
Sze Yi Mak ◽  
Stephen Sammut ◽  
Ho Cheung Shum ◽  
Dae Kun Hwang ◽  
...  

Electrospraying is a technique used to generate microparticles in a high throughput manner. For biomedical applications, a biocompatible electrosprayed material is often desirable. Using polymers, such as alginate hydrogels, makes it possible to create biocompatible and biodegradable microparticles that can be used for cell encapsulation, to be employed as drug carriers, and for use in 3D cell culturing. Evidence in the literature suggests that the morphology of the biocompatible microparticles is relevant in controlling the dynamics of the microparticles in drug delivery and 3D cell culturing applications. Yet, most electrospray-based techniques only form spherical microparticles, and there is currently no widely adopted technique for producing non-spherical microparticles at a high throughput. Here, we demonstrate the generation of non-spherical biocompatible alginate microparticles by electrospraying, and control the shape of the microparticles by varying experimental parameters such as chemical concentration and the distance between the electrospray tip and the particle-solidification bath. Importantly, we show that these changes to the experimental setup enable the synthesis of different shaped particles, and the systematic change in parameters, such as chemical concentration, result in monotonic changes to the particle aspect ratio. We expect that these results will find utility in many biomedical applications that require biocompatible microparticles of specific shapes.


2021 ◽  
pp. 2000048
Author(s):  
Mervat M. Eltantawy ◽  
Mikhail A. Belokon ◽  
Elena V. Belogub ◽  
Olesia I. Ledovich ◽  
Ekaterina V. Skorb ◽  
...  

2021 ◽  
Vol 7 ◽  
Author(s):  
Haruki Miyamoto ◽  
Katsunori Higuchi ◽  
Yuta Nakashima ◽  
Yukio Fujiwara ◽  
Yoshihiro Komohara ◽  
...  

To investigate the effects of microparticles on the immune system, a device was designed for an optimal culture environment. Macrophages phagocytose microparticles and produce inflammatory cytokines. In a culture environment in which macrophages phagocytose microparticles mixed in a culture medium, it remains unclear whether the macrophages can physically access all the microparticles present in the culture medium. In the culturing of fine particles, such as microparticles, it is necessary to devise methods that can realize a close biological contact between the macrophages and the microparticles. To enable macrophages to appropriately phagocytose microparticles, a microchamber with a glenoid hole for cell culturing was designed and manufactured. To clarify the effects of the size, administration amount, and administration time of the microparticles on the production of inflammatory cytokines, a system that can continuously deliver and collect the culture medium was introduced. The results obtained using these systems helped clarify the aforementioned effects. Our study confirms the possibility of employing a system that can optimally adjust the biological contact between macrophages and microparticles in a culture environment.


The Analyst ◽  
2021 ◽  
Author(s):  
Ghazaleh Jamalipour Soufi ◽  
Siavash Iravani ◽  
Rajender S Varma

Molecularly imprinted polymers (MIPs) have numerous applications in sensing field, the detection/recognition of virus, the structure determination of proteins, drug delivery, artificial/biomimetic antibodies, drug discovery, and cell culturing. There are...


Sign in / Sign up

Export Citation Format

Share Document