scholarly journals Quantitative trait loci for yellow rust resistance in spring wheat doubled haploid populations developed from the German Federal ex situ genebank genetic resources

2021 ◽  
Author(s):  
Ibrahim S. Draz ◽  
Albrecht Serfling ◽  
Quddoos H. Muqaddasi ◽  
Marion S. Röder
2019 ◽  
Vol 132 (11) ◽  
pp. 3023-3033 ◽  
Author(s):  
Firdissa E. Bokore ◽  
Richard D. Cuthbert ◽  
Ron E. Knox ◽  
Arti Singh ◽  
Heather L. Campbell ◽  
...  

2011 ◽  
Vol 47 (Special Issue) ◽  
pp. S43-S48 ◽  
Author(s):  
A. Börner ◽  
K. Neumann ◽  
B. Kobiljski

It is estimated that world-wide existing germplasm collections contain about 7.5 million accessions of plant genetic resources for food and agriculture. Wheat (Triticum and Aegilops) represents the biggest group comprising 900 000 accessions. However, such a huge number of accessions is hindering a successful exploitation of the germplasm. The creation of core collections representing a wide spectrum of the genetic variation of the whole assembly may help to overcome the problem. Here we demonstrate the successful utilisation of such a core collection for the identification and molecular mapping of genes (Quantitative Trait Loci) determining the agronomic traits flowering time and grain yield, exploiting a marker-trait-association based technique. Significant marker-trait associations were obtained and are presented. The intrachromosomal location of many of these associations coincided with those of already identified major genes or quantitative trait loci, but others were detected in regions where no known genes have been located to date.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ling Qiao ◽  
Justin Wheeler ◽  
Rui Wang ◽  
Kyle Isham ◽  
Natalie Klassen ◽  
...  

Cadmium (Cd) is a heavy metal that can cause a variety of adverse effects on human health, including cancer. Wheat comprises approximately 20% of the human diet worldwide; therefore, reducing the concentrations of Cd in wheat grain will have significant impacts on the intake of Cd in food products. The tests for measuring the Cd content in grain are costly, and the content is affected significantly by soil pH. To facilitate breeding for low Cd content, this study sought to identify quantitative trait loci (QTL) and associated molecular markers that can be used in molecular breeding. One spring wheat population of 181 doubled haploid lines (DHLs), which was derived from a cross between two hard white spring wheat cultivars “UI Platinum” (UIP) and “LCS Star” (LCS), was assessed for the Cd content in grain in multiple field trials in Southeast Idaho, United States. Three major QTL regions, namely, QCd.uia2-5B, QCd.uia2-7B, and QCd.uia2-7D, were identified on chromosomes 5B, 7B, and 7D, respectively. All genes in these three QTL regions were identified from the NCBI database. However, three genes related to the uptake and transport of Cd were used in the candidate gene analysis. The sequences of TraesCS5B02G388000 (TaHMA3) in the QCd.uia2-5B region and TraesCS7B02G320900 (TaHMA2) and TraesCS7B02G322900 (TaMSRMK3) in the QCd.uia2-7B region were compared between UIP and LCS. TaHMA2 on 7B is proposed for the first time as a candidate gene for grain Cd content in wheat. A KASP marker associated with this gene was developed and it will be further validated in near-isogenic lines via a gene-editing system in future studies.


2013 ◽  
Vol 126 (10) ◽  
pp. 2427-2449 ◽  
Author(s):  
G. M. Rosewarne ◽  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
C. X. Lan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document