Tensile properties, swelling, and water absorption behavior of rice-husk-powder-filled polypropylene/(recycled acrylonitrile-butadiene rubber) composites

2011 ◽  
Vol 17 (3) ◽  
pp. 190-197 ◽  
Author(s):  
H. Ismail ◽  
S. Ragunathan ◽  
K. Hussin
Author(s):  
Ragunathan Santiagoo ◽  
Gomesh Nair ◽  
Husnul Azan Tajarudin ◽  
Zawawi Daud ◽  
Mustaffa Zainal

2015 ◽  
Vol 754-755 ◽  
pp. 210-214 ◽  
Author(s):  
Ragunathan Santiagoo ◽  
Sam Sung Ting ◽  
Hanafi Ismail ◽  
Mastura Jaafar

The compatibilizer effect of ENR-50 on the tensile properties and morphology of linear low density polyethylene (LLDPE)/ recycled acrylonitrile butadiene rubber (NBRr)/ rice husk powder (RHP) composites has been studied. The RHP size utilize in this work is 150 – 300 μm. LLDPE/NBRr/RHP composites were prepared by melt mixing technique at 180 °C for 9 minutes at 50 rpm rotor speed using heated two roll mill. The series of composites investigated were 100/0/5, 80/20/5, 70/30/5, 60/40/5, 50/50/5, and 40/60/5. The composites were analysed by using tensile test and morphology examination. The result showed that the tensile strength of composite was decreased with the increasing of recycled acrylonitrile butadiene rubber (NBRr) content while elongation at break (Eb) were increased. However, the tensile strength and elongation at break result for composites with ENR-50 as compatibilizer showed higher values. The morphological finding supports the tensile properties which indicate better interaction between the RHP filler and LLDPE/NBRr matrix in the presence of ENR-50 compatibilizer.


2011 ◽  
Vol 471-472 ◽  
pp. 472-477
Author(s):  
Santiagoo Ragunathan ◽  
Hanafi Ismail ◽  
Hussin Kamarudin

The effect of silane treatment on tensile properties and morphology of recycled acrylonitrile butadiene rubber(NBRr)/polypropylene(PP)/rice husk powder(RHP) composites has been studied. Polypropylene/recycled acrylonitrile butadiene rubber/rice husk powder (PP/NBRr/RHP) composite were prepared by melt mixing technique at 180º C for 9 minutes and 50rpm rotor speed using an internal mixer. Five different composites compositions (70/30/0, 7030/5, 70/30/10, 70/30/15 and 70/30/30), with silane treated RHP(treated) and without silane treatment(untreated) was studied. The specimens were analyzed by different techniques i.e. tensile test and scanning electron microscopy (SEM). The result obtained showed lower tensile properties with increasing amount of NBRr content. Lower tensile strength and tensile modulus was exhibited with increasing NBRr content. However higher tensile strength, greater tensile modulus and lower elongation at break in PP/NBRr/RHP was exhibited for silane treated RHP composites compare with untreated RHP. PP/NBRr/RHP composite was found to become more brittle with strong attachment between PP/NBR matrix and RHP filler with silane treatment. Good adhesion between silane treated RHP filler and PP/NBRr matrix was confirmed by the morphological studies.


2009 ◽  
pp. NA-NA ◽  
Author(s):  
Shaji Joseph ◽  
P.A. Sreekumar ◽  
Jose M. Kenny ◽  
Debora Puglia ◽  
Sabu Thomas ◽  
...  

2018 ◽  
Vol 51 (1) ◽  
pp. 26-35
Author(s):  
Steven C Peterson ◽  
Sanghoon Kim

Heat-treated starch (HTS) is a renewable material that can be used to modify the surface chemistry of small particles. In this work, HTS was used to coat hydrophilic biochar particles in order to make them more hydrophobic. Then, when added as filler to hydrophobic styrene–butadiene rubber (SBR), the coated biochar dispersed more easily and had enhanced filler–matrix interactions, which were reflected in the tensile properties of the final composites. Biochar particles modified with 5% (weight) HTS showed increases of 59% in the ultimate tensile strength, 49% in elongation percentage, and 79% in fracture toughness of SBR composites compared to unmodified biochar particles. This shows that HTS can be used to improve the tensile properties of composites filled with biochar and potentially other hydrophilic filler materials.


Sign in / Sign up

Export Citation Format

Share Document