scholarly journals Wind turbine robust disturbance accommodating control using non‐smooth H ∞ optimization

Wind Energy ◽  
2021 ◽  
Author(s):  
M. Hung Do ◽  
Dirk Söffker
Author(s):  
Cong Cong

Vibrations of blades and tower have important impact for wind turbine. This paper presents a active controller design to suppress blade edgewise vibrations under aerodynamic load and gravitational load.Treating the sum of aerodynamic load input in edgewise direction and gravitational load as unknown disturbance input,a stochastic disturbance accommodating control(SDAC) approach is proposed to design a controller which it utilizes a minimum-variance unbiased estimator(MVUE) to estimate both state and unknown input. The stability analysis proved that the proposed SDAC is bounded in mean square.In order to verify the performance of the minimum-variance unbiased estimator and the proposed SDAC, numerical simulations using Matlab/Simulink have been carried out for the National Renewable Energy Laboratory 5-MW wind turbine.Under the different circumstance which exists the random process and measure noise and noise free. It is shown that the estimation value by MVUE can tracking the real state and unknown input. The results are also compared to the traditional linear quadratic regulator(LQR) and show that the proposed stochastic disturbance accommodating control scheme can further reduce displacement in edgewise vibrations direction and the control strategy is more effective than the LQR.


2012 ◽  
Vol 522 ◽  
pp. 838-841
Author(s):  
Guo Yu Hu ◽  
Wen Lei Sun ◽  
Ji Zhe Hai ◽  
Yan Xu

This paper uses modern control based on DAC control to numerically simulate a 1.5MW wind turbine. Through linearized modeling of 1.5MW wind turbine, this paper illustrates state-space control design and simulation for a 1.5MW wind turbine. This paper emphasizes on the use of DAC control to alleviate loads when the turbine is operating at maximum power. Loads diagrams of 1.5MW wind turbine including generator, low-speed shaft and high-speed shaft are obtained. The simulation results show that the collective pitch control based on DAC has certain effects on load alleviation compared to PI control.


Author(s):  
Na Wang ◽  
Alan D. Wright ◽  
Mark J. Balas

In this paper, solvability conditions for disturbance accommodating control (DAC) have been discussed and applied on wind turbine controller design in above-rated wind speed to regulate rotor speed and to mitigate turbine structural loads. An asymptotically stabilizing DAC controller with disturbance impact on the wind turbine being totally canceled out can be found if certain conditions are fulfilled. Designing a rotor speed regulation controller without steady-state error is important for applying linear control methodology such as DAC on wind turbines. Therefore, solvability conditions of DAC without steady-state error are attractive and can be taken as examples when designing a multitask turbine controller. DAC controllers solved via Moore–Penrose Pseudoinverse and the Kronecker product are discussed, and solvability conditions of using them are given. Additionally, a new solvability condition based on inverting the feed-through D term is proposed for the sake of reducing computational burden in the Kronecker product. Applications of designing collective pitch and independent pitch controllers based on DAC are presented. Recommendations of designing a DAC-based wind turbine controller are given. A DAC controller motivated by the proposed solvability condition that utilizes the inverse of feed-through D term is developed to mitigate the blade flapwise once-per-revolution bending moment together with a standard proportional integral controller in the control loop to assist rotor speed regulation. Simulation studies verify the discussed solvability conditions of DAC and show the effectiveness of the proposed DAC control design methodology.


2003 ◽  
Vol 17 (4) ◽  
pp. 16
Author(s):  
S. Peace
Keyword(s):  

2018 ◽  
pp. 214-223
Author(s):  
AM Faria ◽  
MM Pimenta ◽  
JY Saab Jr. ◽  
S Rodriguez

Wind energy expansion is worldwide followed by various limitations, i.e. land availability, the NIMBY (not in my backyard) attitude, interference on birds migration routes and so on. This undeniable expansion is pushing wind farms near populated areas throughout the years, where noise regulation is more stringent. That demands solutions for the wind turbine (WT) industry, in order to produce quieter WT units. Focusing in the subject of airfoil noise prediction, it can help the assessment and design of quieter wind turbine blades. Considering the airfoil noise as a composition of many sound sources, and in light of the fact that the main noise production mechanisms are the airfoil self-noise and the turbulent inflow (TI) noise, this work is concentrated on the latter. TI noise is classified as an interaction noise, produced by the turbulent inflow, incident on the airfoil leading edge (LE). Theoretical and semi-empirical methods for the TI noise prediction are already available, based on Amiet’s broadband noise theory. Analysis of many TI noise prediction methods is provided by this work in the literature review, as well as the turbulence energy spectrum modeling. This is then followed by comparison of the most reliable TI noise methodologies, qualitatively and quantitatively, with the error estimation, compared to the Ffowcs Williams-Hawkings solution for computational aeroacoustics. Basis for integration of airfoil inflow noise prediction into a wind turbine noise prediction code is the final goal of this work.


Sign in / Sign up

Export Citation Format

Share Document