Long-term energy models: Principles, characteristics, focus, and limitations

2013 ◽  
Vol 2 (2) ◽  
pp. 158-177 ◽  
Author(s):  
Maurizio Gargiulo ◽  
Brian Ó Gallachóir
Keyword(s):  
2019 ◽  
Vol 240 ◽  
pp. 964-985 ◽  
Author(s):  
Katerina Kermeli ◽  
Oreane Y. Edelenbosch ◽  
Wina Crijns-Graus ◽  
Bas J. van Ruijven ◽  
Silvana Mima ◽  
...  

Energy ◽  
2017 ◽  
Vol 122 ◽  
pp. 701-710 ◽  
Author(s):  
O.Y. Edelenbosch ◽  
K. Kermeli ◽  
W. Crijns-Graus ◽  
E. Worrell ◽  
R. Bibas ◽  
...  

For all sector of the economy including the construction sector, energy consumption forecasting is critical for future planning. The building sector accounts for a staggering 30% of the world’s energy use and one-third of associated greenhouse gas (GHG) emissions worldwide. Modeling of building energy performance and consumption forecasting is significant for energy policy formulation, fixing targets and control energy usage to provide a long term energy security. Many energy models are accessible now, but the area is still under development and needs perfection on several counts. To select the most suitable and appropriate model for a specific purpose, it is often hard to evaluate the various models and their characteristics. This article provides a broad analysis of modeling methods, classification, and applications in constructed settings with an improved focus. A critical assessment of various models is also provided based on their composition, input-output relationships, strengths, and weaknesses to define study gaps and provide directions for future studies.


Energy ◽  
2021 ◽  
pp. 121415
Author(s):  
Pernille Seljom ◽  
Lisa Kvalbein ◽  
Lars Hellemo ◽  
Michal Kaut ◽  
Miguel Muñoz Ortiz

2013 ◽  
Author(s):  
Sara Zgheib ◽  
Stephanie Lucas ◽  
Mathieu Mequinion ◽  
Odile Broux ◽  
Damien Leterme ◽  
...  

Energy ◽  
2020 ◽  
Vol 212 ◽  
pp. 118737
Author(s):  
Kristina Govorukha ◽  
Philip Mayer ◽  
Dirk Rübbelke ◽  
Stefan Vögele
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1109
Author(s):  
Robert Bock ◽  
Björn Kleinsteinberg ◽  
Bjørn Selnes-Volseth ◽  
Odne Stokke Burheim

For renewable energies to succeed in replacing fossil fuels, large-scale and affordable solutions are needed for short and long-term energy storage. A potentially inexpensive approach of storing large amounts of energy is through the use of a concentration flow cell that is based on cheap and abundant materials. Here, we propose to use aqueous iron chloride as a reacting solvent on carbon electrodes. We suggest to use it in a red-ox concentration flow cell with two compartments separated by a hydrocarbon-based membrane. In both compartments the red-ox couple of iron II and III reacts, oxidation at the anode and reduction at the cathode. When charging, a concentration difference between the two species grows. When discharging, this concentration difference between iron II and iron III is used to drive the reaction. In this respect it is a concentration driven flow cell redox battery using iron chloride in both solutions. Here, we investigate material combinations, power, and concentration relations.


Sign in / Sign up

Export Citation Format

Share Document