Separation performance and mechanism of the novel modified PES composite NF membrane for the detection on dissolved organic nitrogen

2021 ◽  
Author(s):  
Ying Ding ◽  
Jianzhong Zhu ◽  
Dong Liu
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng Liu ◽  
Jie Wang ◽  
Wei Chen ◽  
Zhehao Sun ◽  
Zhen Cao

More and more attention is paid to dissolved organic nitrogen (DON) and some specific categories of amino acids are considered to be the direct precursors of nitrogenous disinfection byproducts (N-DBPs). Histidine was chosen to study the efficiency and mechanism of amino acid in UV/Cu-TiO2system. Moreover, the influences of pH, organics, and inorganic ion on the photocatalytic efficiency were also investigated. The results show that the degradation rate of DON in the UV/Cu-TiO2system was about 50% after 60 min, and it was much lower than that of histidine (72%), which indicated that a part of degraded histidine was oxidized to other N-containing organics. The optimal pH value was 7.0 for the photodegradation of histidine, and the presence of organic compound and inorganic ion would decrease the degradation performance to some extent. After 6 h irradiation, histidine was totally degraded intoNH4+, and in the following 2 h,NH4+was oxidized toNO3-firstly and thenNO3-was reduced to N2and overflowed from water, which should be attributed to the doping of Cu in the TiO2and provided a way to totally degrade the DON from the water.


Chemosphere ◽  
2021 ◽  
pp. 130876
Author(s):  
Synthia P. Mallick ◽  
Donald R. Ryan ◽  
Kaushik Venkiteshwaran ◽  
Patrick J. McNamara ◽  
Brooke K. Mayer

2013 ◽  
Vol 10 (11) ◽  
pp. 7609-7622 ◽  
Author(s):  
M. Alkhatib ◽  
P. A. del Giorgio ◽  
Y. Gelinas ◽  
M. F. Lehmann

Abstract. The distribution of dissolved organic nitrogen (DON) and carbon (DOC) in sediment porewaters was determined at nine locations along the St. Lawrence estuary and in the gulf of St. Lawrence. In a previous manuscript (Alkhatib et al., 2012a), we have shown that this study area is characterized by gradients in the sedimentary particulate organic matter (POM) reactivity, bottom water oxygen concentrations, and benthic respiration rates. Based on the porewater profiles, we estimated the benthic diffusive fluxes of DON and DOC in the same area. Our results show that DON fluxed out of the sediments at significant rates (110 to 430 μmol m−2 d−1). DON fluxes were positively correlated with sedimentary POM reactivity and varied inversely with sediment oxygen exposure time (OET), suggesting direct links between POM quality, aerobic remineralization and the release of DON to the water column. DON fluxes were on the order of 30 to 64% of the total benthic inorganic fixed N loss due to denitrification, and often exceeded the diffusive nitrate fluxes into the sediments. Hence they represented a large fraction of the total benthic N exchange, a result that is particularly important in light of the fact that DON fluxes are usually not accounted for in estuarine and coastal zone nutrient budgets. In contrast to DON, DOC fluxes out of the sediments did not show any significant spatial variation along the Laurentian Channel (LC) between the estuary and the gulf (2100 ± 100 μmol m−2 d−1). The molar C / N ratio of dissolved organic matter (DOM) in porewater and the overlying bottom water varied significantly along the transect, with lowest C / N in the lower estuary (5–6) and highest C / N (> 10) in the gulf. Large differences between the C / N ratios of porewater DOM and POM are mainly attributed to a combination of selective POM hydrolysis and elemental fractionation during subsequent DOM mineralization, but selective adsorption of DOM to mineral phases could not be excluded as a potential C / N fractionating process. The extent of this C- versus N- element partitioning seems to be linked to POM reactivity and redox conditions in the sediment porewaters. Our results thus highlight the variable effects selective organic matter (OM) preservation can have on bulk sedimentary C / N ratios, decoupling the primary source C / N signatures from those in sedimentary paleoenvironmental archives. Our study further underscores that the role of estuarine sediments as efficient sinks of bioavailable nitrogen is strongly influenced by the release of DON during early diagenetic reactions, and that DON fluxes from continental margin sediments represent an important internal source of N to the ocean.


2021 ◽  
Vol 1 (4) ◽  
pp. 991-1001
Author(s):  
Haidong Hu ◽  
Yuanji Shi ◽  
Kewei Liao ◽  
Xinyu Xing ◽  
Caifeng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document