inorganic ion
Recently Published Documents


TOTAL DOCUMENTS

722
(FIVE YEARS 67)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Vol 8 ◽  
Author(s):  
Jingru Yang ◽  
Jinling Yang ◽  
Mingqiang Chen ◽  
Zhengyi Fu ◽  
Jing Sun ◽  
...  

This study was conducted to understand the changes of physiological and biochemical indexes of black and red shell Pinctada fucata under acute high and low salt stress. In this study, the salinity of 35‰ was used as the control, while the salinities of 20 and 50% salinity were used as the low and high salt treatment groups, respectively. The osmotic pressure (OSM) and ion concentration in the hemolymph, Na+-K+ -ATPase (NKA) activity and respiratory metabolism in gills, and antioxidant and immune (non) enzymes in the hepatopancreas of P. fucata with two shell colors were compared and analyzed at the time periods of 1.5 and 3 h post-salinity stress. The results showed that the OSM and inorganic ion (Na+, Ca2+, and Cl–) concentration in the hemolymph of the black and red P. fucata increased significantly with the increase of salinity after the time periods of 1.5 and 3 h. At 3 h, the black P. fucata NKA activity decreased significantly with the increase of salinity, while red P. fucata reached the highest value at high salinity. The succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH) activities of red P. fucata showed U-shaped and inverted U-shaped distributions with the increase of salinity after 1.5 h, respectively. With the increase of salinity, the phenoloxidase (POX) activity of red and black P. fucata showed inverted U-shaped and U-shaped distributions, respectively. The contents of glutathione (GSH) and vitamin C (VC) in black P. fucata decreased significantly with the increase of salinity at 1.5 and 3 h. Red P. fucata GSH and VC reached their maximum value in the 1.5-h low salinity group and 3-h high salinity group. The vitamin E (VE) content in black P. fucata increased significantly with the increase of salinity at 1.5 h, and reached the maximum at 3 h in the control group. Red P. fucata VE reached the maximum at 1.5 and 3 h in the control group. The results obtained from the present study revealed that the sensitivity of P. fucata to salinity varied in shell color. Compared to black P. fucata, red P. fucata responds more quickly to sharp salinity changes, thereby reducing more likely damage. Compared with a high salt environment, P. fucata was more adaptable to the changes of acute low salt environment. The results obtained from the present study provide the physical references for subsequent selective breeding of this species.


2021 ◽  
Author(s):  
Luc Cornet ◽  
Ilse Cleenwerck ◽  
Jessy Praet ◽  
Raphaël R. Leonard ◽  
Nicolas J. Vereecken ◽  
...  

AbstractSnodgrassella is a Betaproteobacteria genus found in the gut of honeybees (Apis spp.) and bumblebees (Bombus spp). It is part of a conserved microbiome that is composed of few core phylotypes and is essential for bee health and metabolism. Phylogenomic analyses using whole genome sequences of 75 Snodgrassella strains from 4 species of honey bees and 14 species of bumblebees showed that these strains formed a monophyletic lineage within the Neisseriaceae family, that Snodgrassella isolates from Asian honeybees diverged early on from the other species in their evolution, that isolates from honeybees and bumblebees were well separated and that this genus consists of at least seven species. We propose to formally name two new Snodgrassella species that were isolated from bumblebees, i.e. Snodgrassella gandavensis sp. nov. and Snodgrassella communis sp. nov. Possible evolutionary scenarios for 107 species or group specific genes revealed very limited evidence for horizontal gene transfer. Functional analyses revealed the importance of small proteins, defense mechanisms, amino acid transport and metabolism, inorganic ion transport and metabolism and carbohydrate transport and metabolism among these 107 specific genes.ImportanceThe microbiome of honeybees (Apis spp.) and bumblebees (Bombus spp.) is highly conserved and represented by few phylotypes. This simplicity in taxon composition makes the bee’s microbiome an emergent model organism for the study of gut microbial communities. Since the description of the Snodgrassella genus, which was isolated from the gut of honeybees and bumblebees in 2013, a single species, i.e. Snodgrassella alvi, has been named. Here we demonstrate that this genus is actually composed of at least seven species, two of them (Snodgrassella gandavensis sp. nov. and Snodgrassella communis sp. nov.) being formally described in the present publication. We also report the presence of 107 genes specific to Snodgrassella species, showing notably the importance of small proteins and defense mechanisms in this genus.Data summaryCornet L and Vandamme P, European Nucleotide Archive (ENA), Project accession: PRJEB47378Cornet L and Vandamme P, European Nucleotide Archive (ENA), Reads accessions: SAMEA9570070 - SAMEA9570078Cornet L and Vandamme P, European Nucleotide Archive (ENA), Genome accessions: GCA_914768015, GCA_914768025, GCA_914768035, GCA_914768045, GCA_914768055, GCA_914768065, GCA_914768075, GCA_914768085, GCA_914768095.


Separations ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 235
Author(s):  
Rajmund Michalski ◽  
Paulina Pecyna-Utylska

Due to the increasing environmental awareness of the public, green chemistry has become an important element of environmental protection. In laboratories around the world, millions of analyses of inorganic and organic anions and cations in water and wastewater samples, and solid and gaseous samples are performed daily. Unfortunately, these activities still generate large costs, including environmental costs, which are related to the scale of the studies, the use of toxic chemical reagents, the waste generated, and the energy consumed. The methods used so far for inorganic ion analysis, including classical methods, are increasingly being replaced by instrumental methods, primarily based on ion chromatography. This paper presents the most important advantages and limitations of ion chromatography, and compares them with the costs of classical analyses for the analytes and sample types. Both the financial and environmental costs associated with the determination of common inorganic ions, such as Cl−, NO2−, NO3−, and NH4+, in 1000 environmental samples, were compared using selected reference wet classical methods and ion chromatography. The advantages and limitations of ion chromatography that allow this separation technique to be classified as a green analytical chemistry method have been described herein.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haolang Liu ◽  
Yuqi Qi ◽  
Jihong Wang ◽  
Yan Jiang ◽  
Mingxin Geng

AbstractThe soil-borne disease caused by Fusarium graminearum seriously affects the corn quality. Straw can greatly improve soil quality, but the effect is limited by its nature and environmental factors. This study explored the impact of straw-JF-1(biocontrol bacteria) combination on soil environment and soil disease resistance. The results showed that the combined treatment increased the proportion of soil large and small macro-aggregates by 22.50 and 3.84%, with soil organic carbon (SOC) content by 16.18 and 16.95%, respectively. Compared to treatment with returning straw to the field alone, the straw-JF-1 combination increased the soil content of humic acid, fulvic acid, and humin by 14.06, 5.50, and 4.37%, respectively. Moreover, A metagenomics showed that returning straw to the field alone increased the abundance of disease-causing fungi (Fusarium and Plectosphaerella), however, the straw-JF-1 combination significantly suppressed this phenomenon as well as improved the abundance of probiotic microorganisms such as Sphingomonas, Mortierella, Bacillus, and Pseudomonas. Functional analysis indicated that the combination of straw and JF-1 improved some bacterial functions, including inorganic ion transport and metabolism, post-translational modification/protein turnover/chaperones and function unknown, fungal functions associated with plant and animal pathogens were effectively inhibited. Pot experiments showed that the straw-JF-1 combination effectively inhibited the Fusarium graminearum induced damage to maize seedlings. Therefore, the combination of straw and JF-1 could be a practical method for soil management.


Author(s):  
Hye-Kyung Cho ◽  
Thao Masters ◽  
Kerryl Greenwood-Quaintance ◽  
Stephen Johnson ◽  
Patricio Jeraldo ◽  
...  

Although Streptococcus agalactiae periprosthetic joint infection (PJI) is not as prevalent as staphylococcal PJI, invasive S. agalactiae infection has recently increased in incidence. Here, RNA-Seq was used to perform transcriptomic analysis of S. agalactiae PJI using fluid derived from sonication of explanted arthroplasties of subjects with S. agalactiae PJI, with results compared to those of S. agalactiae strain NEM316 grown in vitro. 227 genes with outlier expression were found (164 up-regulated and 63 down-regulated) between PJI sonicate fluid and in vitro conditions. Functional enrichment analysis showed genes involved in mobilome and inorganic ion transport and metabolism to be most enriched. Genes involved in nickel, copper, and zinc transport, were upregulated. Among known virulence factors, cyl operon genes, encoding beta-hemolysin/cytolysin, were consistently highly expressed in PJI versus in vitro. The data presented provide insight into S. agalactiae PJI pathogenesis and may be a useful resource for the identification of novel PJI therapeutics or vaccines against invasive S. agalactiae infections.


Author(s):  
Yu. Dzyazko ◽  
Yu. Borysenko ◽  
Yu. Zmievskii ◽  
V. Zakharov ◽  
V. Myronchuk ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Nadeem Joudeh ◽  
Athanasios Saragliadis ◽  
Christian Schulz ◽  
André Voigt ◽  
Eivind Almaas ◽  
...  

Palladium (Pd), due to its unique catalytic properties, is an industrially important heavy metal especially in the form of nanoparticles. It has a wide range of applications from automobile catalytic converters to the pharmaceutical production of morphine. Bacteria have been used to biologically produce Pd nanoparticles as a new environmentally friendly alternative to the currently used energy-intensive and toxic physicochemical methods. Heavy metals, including Pd, are toxic to bacterial cells and cause general and oxidative stress that hinders the use of bacteria to produce Pd nanoparticles efficiently. In this study, we show in detail the Pd stress-related effects on E. coli. Pd stress effects were measured as changes in the transcriptome through RNA-Seq after 10 min of exposure to 100 μM sodium tetrachloropalladate (II). We found that 709 out of 3,898 genes were differentially expressed, with 58% of them being up-regulated and 42% of them being down-regulated. Pd was found to induce several common heavy metal stress-related effects but interestingly, Pd causes unique effects too. Our data suggests that Pd disrupts the homeostasis of Fe, Zn, and Cu cellular pools. In addition, the expression of inorganic ion transporters in E. coli was found to be massively modulated due to Pd intoxication, with 17 out of 31 systems being affected. Moreover, the expression of several carbohydrate, amino acid, and nucleotide transport and metabolism genes was vastly changed. These results bring us one step closer to the generation of genetically engineered E. coli strains with enhanced capabilities for Pd nanoparticles synthesis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2517
Author(s):  
Hiroki Miyajima ◽  
Hiroki Touji ◽  
Kazutoshi Iijima

Bone-like hydroxyapatite (HAp) has been prepared by biomimetic synthesis using simulated body fluid (SBF), mimicking inorganic ion concentrations in human plasma, or 1.5SBF that has 1.5-times higher ion concentrations than SBF. In this study, the controllable preparations of HAp particles from 1.5SBF with different pH values were examined. The particles obtained as precipitates from 1.5SBF showed different morphologies and crystallinities depending on the pH of 1.5SBF. Micro-sized particles at pH 7.4 of 1.5SBF had a higher Ca/P ratio and crystallinity as compared with nano-sized particles at pH 8.0 and pH 8.4 of 1.5SBF. However, a mixture of micro-sized and nano-sized particles was obtained from pH 7.7 of 1.5SBF. When Ca2+ concentrations in 1.5SBF during mineralization were monitored, the concentration at pH 7.4 drastically decreased from 12 to 24 h. At higher pH, such as 8.0 and 8.4, the Ca2+ concentrations decreased during pH adjustment and slightly decreased even after 48 h. In this investigation at pH 7.7, the Ca2+ concentrations were higher than pH 8.0 and 8.4. Additionally, cytotoxicity of the obtained precipitates to mesenchymal stem cells was lower than that of synthetic HAp. Controllable preparation HAp particles from SBF has potential applications in the construction of building components of cell scaffolds.


Sign in / Sign up

Export Citation Format

Share Document