Dynamics of dissolved organic matter and dissolved organic nitrogen during anaerobic/anoxic/oxic treatment processes

2021 ◽  
pp. 125026
Author(s):  
Gang Tang ◽  
Binrui Li ◽  
Bowei Zhang ◽  
Chen Wang ◽  
Guangci Zeng ◽  
...  
2009 ◽  
Vol 60 (1) ◽  
pp. 135-143 ◽  
Author(s):  
A. Dotson ◽  
P. Westerhoff ◽  
S. W. Krasner

Increased contributions from wastewater discharges and algal activity in drinking water supplies can lead to elevated levels of dissolved organic nitrogen (DON), which can increase the likelihood for the formation of emerging nitrogenous disinfection by-products (N-DBPs) of health concern. Dissolved organic matter (DOM) isolated from five waters, using a newly developed DOM isolation method specific to DON fractionation, produced thirty-four isolates of suitable mass. Each isolate was treated with free chlorine or chloramines under formation potential conditions. The DBP yields were determined for three halogenated DBPs (trichloromethane, dichloroacetonitrile, and trichloronitromethane) and one non-halogenated DBP (N-nitrosodimethylamine [NDMA]). Halogenated DBP yields were greater during the application of free chlorine, however chloramination produced significant levels of halogenated N-DBPs for some isolates. NDMA was only observed to form from selected nitrogen-enriched isolates (DOC/DON ratio < 20 mg/mg), especially those isolated from treated wastewater. Other results indicated that nitrogen-enriched DOM resulted in increased yields of the other N-DBPs studied.


2013 ◽  
Vol 10 (11) ◽  
pp. 7609-7622 ◽  
Author(s):  
M. Alkhatib ◽  
P. A. del Giorgio ◽  
Y. Gelinas ◽  
M. F. Lehmann

Abstract. The distribution of dissolved organic nitrogen (DON) and carbon (DOC) in sediment porewaters was determined at nine locations along the St. Lawrence estuary and in the gulf of St. Lawrence. In a previous manuscript (Alkhatib et al., 2012a), we have shown that this study area is characterized by gradients in the sedimentary particulate organic matter (POM) reactivity, bottom water oxygen concentrations, and benthic respiration rates. Based on the porewater profiles, we estimated the benthic diffusive fluxes of DON and DOC in the same area. Our results show that DON fluxed out of the sediments at significant rates (110 to 430 μmol m−2 d−1). DON fluxes were positively correlated with sedimentary POM reactivity and varied inversely with sediment oxygen exposure time (OET), suggesting direct links between POM quality, aerobic remineralization and the release of DON to the water column. DON fluxes were on the order of 30 to 64% of the total benthic inorganic fixed N loss due to denitrification, and often exceeded the diffusive nitrate fluxes into the sediments. Hence they represented a large fraction of the total benthic N exchange, a result that is particularly important in light of the fact that DON fluxes are usually not accounted for in estuarine and coastal zone nutrient budgets. In contrast to DON, DOC fluxes out of the sediments did not show any significant spatial variation along the Laurentian Channel (LC) between the estuary and the gulf (2100 ± 100 μmol m−2 d−1). The molar C / N ratio of dissolved organic matter (DOM) in porewater and the overlying bottom water varied significantly along the transect, with lowest C / N in the lower estuary (5–6) and highest C / N (> 10) in the gulf. Large differences between the C / N ratios of porewater DOM and POM are mainly attributed to a combination of selective POM hydrolysis and elemental fractionation during subsequent DOM mineralization, but selective adsorption of DOM to mineral phases could not be excluded as a potential C / N fractionating process. The extent of this C- versus N- element partitioning seems to be linked to POM reactivity and redox conditions in the sediment porewaters. Our results thus highlight the variable effects selective organic matter (OM) preservation can have on bulk sedimentary C / N ratios, decoupling the primary source C / N signatures from those in sedimentary paleoenvironmental archives. Our study further underscores that the role of estuarine sediments as efficient sinks of bioavailable nitrogen is strongly influenced by the release of DON during early diagenetic reactions, and that DON fluxes from continental margin sediments represent an important internal source of N to the ocean.


2008 ◽  
Vol 8 (6) ◽  
pp. 681-690 ◽  
Author(s):  
H. M. Szabo ◽  
I. Lindfors ◽  
T. Tuhkanen

In this study Natural organic matter (NOM) characteristics and variations of catchment samples (brooks and collector lakes) from Western Finland, and drinking water produced from the same catchment were examined. Seasonal and spatial NOM variations were followed by means of DOC and HPLC-SEC with UV and fluorescence detection. NOM decreased from drains to lakes by 35 to 75% and from drains to drinking water by 73 to 94%. Drains had a higher NOM content in summer and a lower NOM content in winter and spring. Lakes showed inverse patterns and had a higher NOM content in winter and spring and a lower NOM content in summer. HPLC-SEC separated 8 molecular weight fractions. In drains the HMW fractions represented up to 80% of the NOM, in lake waters HMW fractions accounted for 50 to 70% of the NOM. In drinking water IMW fractions dominated. Increased NOM in raw water during winter was associated with increased IMW fractions and the appearance of HMW fractions in drinking water, DOC increasing from 1.4 mg C/L in summer to 5.8 mg C/L in winter. SPH-Tryptophan correlated with the dissolved organic nitrogen and DOC of the samples. The drain affected by agriculture generally presented higher SPH-Tryptophan values than the unaffected drain.


2011 ◽  
Vol 64 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Qunshan Wei ◽  
Rolando Fabris ◽  
Christopher W. K. Chow ◽  
Changzhou Yan ◽  
Dongsheng Wang ◽  
...  

The character of dissolved organic matter (DOM) in source waters from two countries (Australia and China) was investigated using an extended fractionation technique by combining resin adsorption, ultrafiltration and high performance size exclusion chromatography. There are distinctive chemical characteristics associated with DOM origins. Australian sourced DOM had higher hydrophobic acid (HoA) content and exhibited a more pronounced humic character, indicating a higher influence from allochthonous organics (decayed plant bodies from vegetated catchments). The higher content of hydrophobic base and neutral components found in Chinese DOM, may be attributed to the effects of increasing pollution caused by the rapid urbanization in China. The molecular weights (MWs) of aquatic HoA are predominantly in the moderate (e.g. 1–10 kDa) or small (e.g. <1 kDa) ranges. This suggests that aquatic HoA should not be assumed as high MW organics without experimental validation. It is also found that some of the low MW compounds in our samples were hydrophobic, which could explain the observation of low MW organic compounds being able to be removed by conventional treatment processes.


2008 ◽  
Vol 57 (7) ◽  
pp. 1009-1015 ◽  
Author(s):  
Seong-Nam Nam ◽  
Gary Amy

Using three analytical techniques of size exclusion chromatography (SEC), fluorescence excitation-emission matrix (EEM), and dissolved organic nitrogen (DON) measurement, differentiating characteristics of effluent organic matter (EfOM) from natural organic matter (NOM) have been investigated. SEC reveals a wide range of molecular weight (MW) for EfOM and high amount of high MW polysaccharides, and low MW organic acids compared to NOM. Clear protein-like peaks using fluorescence EEM were a major feature of EfOM distinguishing it from NOM. Fluorescence index (FI), an indicator to distinguish autochthonous origin from allochthonous origin, differentiated EfOM from NOM by exhibiting higher values, indicating a microbial origin. In EfOM samples, DON present in higher amounts than NOM.


Sign in / Sign up

Export Citation Format

Share Document