scholarly journals Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control

2019 ◽  
pp. e1529 ◽  
Author(s):  
Sarah A. Peck ◽  
Katlyn D. Hughes ◽  
Jose F. Victorino ◽  
Amber L. Mosley
2020 ◽  
Author(s):  
Sara Luzzi ◽  
Ugo Szachnowski ◽  
Sarah Greener ◽  
Camille Gautier ◽  
Kang Hoo Han ◽  
...  

SUMMARYRNA quality control and timely termination of aberrant transcription are critical for functional gene expression. Here, we report that in Saccharomyces cerevisiae premature transcription termination of mRNAs is coordinated with the transcriptional elongation process and regulated by the evolutionarily conserved ATP-dependent chromatin remodeling complex INO80. Loss of INO80 sensitizes cells to the transcriptional elongation stress drug 6-azauracil and leads to enhanced pausing of elongating RNA Polymerase II across the genome. Transcriptional pausing positively correlates with premature termination of mRNA transcription and is pronounced proximally to promoters at sites of enhanced histone H3 binding to DNA. Cells with deficient INO80 complex accumulate short, unproductive mRNA transcripts on chromatin and are defective in transcription termination mediated by the Nrd1-Nab3-Sen1 (NNS) complex. We find that loss of INO80 compromises the interaction of the RNA surveillance factor Nab2 with short promoter-proximal mRNA transcripts. INO80 promotes co-transcriptional recruitment of Nab2 to chromatin by enabling its interaction with the histone variant H2A.Z. Finally, inactivation of the histone deacetylase complex Rpd3S/Rco1 reduces promoter-proximal pausing and enhances productive transcription through an NNS-dependent termination site when INO80 is compromised. Our work suggests that, by regulation of H2A.Z-containing nucleosomes, INO80 orchestrates a mechanism for premature transcription termination, linking RNA quality control to the transcriptional process.


2013 ◽  
Vol 41 (6) ◽  
pp. 1666-1672 ◽  
Author(s):  
Cornelia Kilchert ◽  
Lidia Vasiljeva

Eukaryotic mRNAs are extensively processed to generate functional transcripts, which are 5′ capped, spliced and 3′ polyadenylated. Accumulation of unprocessed (aberrant) mRNAs can be deleterious for the cell, hence processing fidelity is closely monitored by QC (quality control) mechanisms that identify erroneous transcripts and initiate their selective removal. Nucleases including Xrn2/Rat1 and the nuclear exosome have been shown to play an important role in the turnover of aberrant mRNAs. Recently, with the growing appreciation that mRNA processing occurs concomitantly with polII (RNA polymerase II) transcription, it has become evident that QC acts at the transcriptional level in addition to degrading aberrant RNAs. In the present review, we discuss mechanisms that allow cells to co-transcriptionally initiate the removal of RNAs as well as down-regulate transcription of transcripts where processing repeatedly fails.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1059-1070
Author(s):  
Susie C Howard ◽  
Arelis Hester ◽  
Paul K Herman

Abstract The Ras signaling pathway in Saccharomyces cerevisiae controls cell growth via the cAMP-dependent protein kinase, PKA. Recent work has indicated that these effects on growth are due, in part, to the regulation of activities associated with the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. However, the precise target of these Ras effects has remained unknown. This study suggests that Ras/PKA activity regulates the elongation step of the RNA polymerase II transcription process. Several lines of evidence indicate that Spt5p in the Spt4p/Spt5p elongation factor is the likely target of this control. First, the growth of spt4 and spt5 mutants was found to be very sensitive to changes in Ras/PKA signaling activity. Second, mutants with elevated levels of Ras activity shared a number of specific phenotypes with spt5 mutants and vice versa. Finally, Spt5p was efficiently phosphorylated by PKA in vitro. Altogether, the data suggest that the Ras/PKA pathway might be directly targeting a component of the elongating polymerase complex and that this regulation is important for the normal control of yeast cell growth. These data point out the interesting possibility that signal transduction pathways might directly influence the elongation step of RNA polymerase II transcription.


Sign in / Sign up

Export Citation Format

Share Document