eukaryotic mrnas
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 35)

H-INDEX

44
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Irene Barbarin-Bocahu ◽  
Marc GRAILLE

The determination of three dimensional structures of macromolecules is one of the actual challenge in biology with the ultimate objective of understanding their function. So far, X-ray crystallography is the most popular method to solve structure, but this technique relies on the generation of diffracting crystals. Once a correct data set has been obtained, the calculation of electron density maps requires to solve the so-called phase problem using different approaches. The most frequently used technique is molecular replacement, which relies on the availability of the structure of a protein sharing strong structural similarity with the studied protein. Its success rate is directly correlated with the quality of the models used for the molecular replacement trials. The availability of models as accurate as possible is then definitely critical. Very recently, a breakthrough step has been made in the field of protein structure prediction thanks to the use of machine learning approaches as implemented in the AlphaFold or RoseTTAFold structure prediction programs. Here, we describe how these recent improvements helped us to solve the crystal structure of a protein involved in the nonsense-mediated mRNA decay pathway (NMD), an mRNA quality control pathway dedicated to the elimination of eukaryotic mRNAs harboring premature stop codons.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yilong Ai ◽  
Shiwei Liu ◽  
Hailing Luo ◽  
Siyuan Wu ◽  
Haigang Wei ◽  
...  

N6-Methyladenosine (m6A) modification is one of the commonest chemical modifications in eukaryotic mRNAs, which has essential effects on mRNA translation, splicing, and stability. Currently, there is a rising concern on the regulatory role of m6A in tumorigenesis. As a known component in the m6A methyltransferase complex, METTL3 (methyltransferase-like 3) plays an essential role in m6A methylation. Till now, the functions of METTL3 in oral squamous cell carcinoma (OSCC) and its relative mechanism remain to be explored. In this research, through the GEPIA database, we found that high METTL3 expression has a correlation with poor prognosis of squamous cell carcinoma of head and neck. qRT-PCR displayed that METTL3 was highly expressed in OSCC cells. Functionally, METTL3 knockdown reduced the invasion, migration, and proliferation competence of OSCC cells and attenuated the activation of CD8+ T cells. In contrast, METTL3 overexpression resulted in opposite results. GEPIA, UALCAN, and SRAMP databases, PCR, western blot, and m6A RNA methylation assay confirmed the m6A modification of PRMT5 and PD-L1 mediated by METTL3. In conclusion, our results displayed that METTL3 intensified the metastasis and proliferation of OSCC by modulating the m6A amounts of PRMT5 and PD-L1, suggesting that METTL3 may be a therapeutic target for OSCC patients.


2021 ◽  
Author(s):  
Matti Turtola ◽  
M. Cemre Manav ◽  
Ananthanarayanan Kumar ◽  
Agnieszka Tudek ◽  
Seweryn Mroczek ◽  
...  

Biogenesis of most eukaryotic mRNAs involves the addition of an untemplated polyadenosine (pA) tail by the cleavage and polyadenylation machinery. The pA tail, and its exact length, impacts mRNA stability, nuclear export, and translation. To define how polyadenylation is controlled in S. cerevisiae, we have used an in vivo assay capable of assessing nuclear pA tail synthesis, analyzed tail length distributions by direct RNA sequencing, and reconstituted polyadenylation reactions with purified components. This revealed three control mechanisms for pA tail length. First, we found that the pA binding protein (PABP) Nab2p is the primary regulator of pA tail length. Second, when Nab2p is limiting, the nuclear pool of Pab1p, the second major PABP in yeast, controls the process. Third, when both PABPs are absent, the cleavage and polyadenylation factor (CPF) limits pA tail synthesis. Thus, Pab1p and CPF provide fail-safe mechanisms to a primary Nab2p-dependent pathway, thereby preventing uncontrolled polyadenylation and allowing mRNA export and translation.


Author(s):  
Zbigniew Dominski ◽  
Liang Tong

In animal cells, replication-dependent histone mRNAs end with a highly conserved stem–loop structure followed by a 4- to 5-nucleotide single-stranded tail. This unique 3′ end distinguishes replication-dependent histone mRNAs from all other eukaryotic mRNAs, which end with a poly(A) tail produced by the canonical 3′-end processing mechanism of cleavage and polyadenylation. The pioneering studies of Max Birnstiel's group demonstrated nearly 40 years ago that the unique 3′ end of animal replication-dependent histone mRNAs is generated by a distinct processing mechanism, whereby histone mRNA precursors are cleaved downstream of the stem–loop, but this cleavage is not followed by polyadenylation. The key role is played by the U7 snRNP, a complex of a ∼60 nucleotide U7 snRNA and many proteins. Some of these proteins, including the enzymatic component CPSF73, are shared with the canonical cleavage and polyadenylation machinery, justifying the view that the two metazoan pre-mRNA 3′-end processing mechanisms have a common evolutionary origin. The studies on U7 snRNP culminated in the recent breakthrough of reconstituting an entirely recombinant human machinery that is capable of accurately cleaving histone pre-mRNAs, and determining its structure in complex with a pre-mRNA substrate (with 13 proteins and two RNAs) that is poised for the cleavage reaction. The structure uncovered an unanticipated network of interactions within the U7 snRNP and a remarkable mechanism of activating catalytically dormant CPSF73 for the cleavage. This work provides a conceptual framework for understanding other eukaryotic 3′-end processing machineries.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rachael Emily Turner ◽  
Paul F Harrison ◽  
Angavai Swaminathan ◽  
Calvin A Kraupner-Taylor ◽  
Belinda J Goldie ◽  
...  

Most eukaryotic mRNAs accommodate alternative sites of poly(A) addition in the 3’ untranslated region in order to regulate mRNA function. Here, we present a systematic analysis of 3’ end formation factors, which revealed 3’UTR lengthening in response to a loss of the core machinery, whereas a loss of the Sen1 helicase resulted in shorter 3’UTRs. We show that the anti-cancer drug cordycepin, 3’ deoxyadenosine, caused nucleotide accumulation and the usage of distal poly(A) sites. Mycophenolic acid, a drug which reduces GTP levels and impairs RNA polymerase II (RNAP II) transcription elongation, promoted the usage of proximal sites and reversed the effects of cordycepin on alternative polyadenylation. Moreover, cordycepin-mediated usage of distal sites was associated with a permissive chromatin template and was suppressed in the presence of an rpb1 mutation, which slows RNAP II elongation rate. We propose that alternative polyadenylation is governed by temporal coordination of RNAP II transcription and 3’ end processing and controlled by the availability of 3’ end factors, nucleotide levels and chromatin landscape.


2021 ◽  
Author(s):  
Zefeng Wang ◽  
Yun Yang ◽  
Xiaojuan Fan ◽  
Yanwen Ye ◽  
Chuyun Chen ◽  
...  

Although most eukaryotic mRNAs require a 5ʹ-cap for translation initiation, some can also be translated through a poorly studied cap-independent pathway. Here we developed a circRNA-based system and unbiasedly identified more than 10,000 sequences in the human transcriptome that contain Cap-independent Translation Initiators (CiTIs). Surprisingly, most of the identified CiTIs are located in 3ʹUTRs, which mainly promote translation initiation in mRNAs bearing highly structured 5ʹUTR. Mechanistically, CiTI recruits several translation initiation factors including eIF3 and DHX29, which in turn unwind 5ʹUTR structures and facilitate ribosome scanning. Functionally, we showed that the translation of HIF1A mRNA, an endogenous DHX29 target, is antagonistically regulated by its 5ʹUTR structure and a new 3ʹ-CiTI in response to hypoxia. Therefore, deletion of 3ʹ-CiTI suppresses cell growth in hypoxia and tumor progression in vivo. Collectively, our study uncovers a new regulatory mode for translation where the 3ʹUTR actively participate in the translation initiation.


2021 ◽  
Vol 22 (7) ◽  
pp. 3662
Author(s):  
Pavel A. Sakharov ◽  
Egor A. Smolin ◽  
Dmitry N. Lyabin ◽  
Sultan C. Agalarov

The methylation of adenosine in the N6 position (m6A) is a widely used modification of eukaryotic mRNAs. Its importance for the regulation of mRNA translation was put forward recently, essentially due to the ability of methylated mRNA to be translated in conditions of inhibited cap-dependent translation initiation, e.g., under stress. However, the peculiarities of translation initiation on m6A-modified mRNAs are not fully known. In this study, we used toeprinting and translation in a cell-free system to confirm that m6A-modified mRNAs can be translated in conditions of suppressed cap-dependent translation. We show for the first time that m6A-modified mRNAs display not only decreased elongation, but also a lower efficiency of translation initiation. Additionally, we report relative resistance of m6A-mRNA translation initiation in the absence of ATP and inhibited eIF4A activity. Our novel findings indicate that the scanning of m6A-modified leader sequences is performed by a noncanonical mechanism.


2021 ◽  
Author(s):  
Bingtian Shi ◽  
Qinqin Song ◽  
Xiaonuan Luo ◽  
Juan Song ◽  
Dong Xia ◽  
...  

Abstract Cap-dependent initiation of translation is a canonical mechanism adopted by eukaryotic cells. Internal ribosome entry site (IRES)-dependent translation is a mechanism distinct from 5′ cap-dependent translation. IRES elements are located mainly in the 5′-untranslated regions (UTRs) of viral and eukaryotic mRNAs. In addition, IRESs are found in the coding regions of some viral and eukaryotic genomes and initiate the translation of some functional truncated isoforms. Here, via IRES-initiated expression of proteins, bicistronic vectors and ribosome profiling of the human rhinovirus 16 (HRV16), we found that the coding region of the nonstructural proteins P2 and P3 contained 5 putative IRES elements. These 5 putative IRESs were located within nucleotides 4286-4585, 5002-5126, 6245-6394, 6619-6718 and 6629-6778 and initiated green fluorescent protein (GFP) expression in vitro. This alternative mechanism might be effective and economical for eliminating the time and raw material required to synthesize the full-length polyprotein.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cong Pian ◽  
Zhixin Yang ◽  
Yuqian Yang ◽  
Liangyun Zhang ◽  
Yuanyuan Chen

N6-methyladenosine (m6A), the most common posttranscriptional modification in eukaryotic mRNAs, plays an important role in mRNA splicing, editing, stability, degradation, etc. Since the methylation state is dynamic, methylation sequencing needs to be carried out over different time periods, which brings some difficulties to identify the RNA methyladenine sites. Thus, it is necessary to develop a fast and accurate method to identify the RNA N6-methyladenosine sites in the transcriptome. In this study, we use first-order and second-order Markov models to identify RNA N6-methyladenine sites in three species (Saccharomyces cerevisiae, mouse, and Homo sapiens). These two methods can fully consider the correlation between adjacent nucleotides. The results show that the performance of our method is better than that of other existing methods. Furthermore, the codons encoded by three nucleotides have biases in mRNA, and a second-order Markov model can capture this kind of information exactly. This may be the main reason why the performance of the second-order Markov model is better than that of the first-order Markov model in the m6A prediction problem. In addition, we provide a corresponding web tool called MM-m6APred.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hélène Scheer ◽  
Caroline de Almeida ◽  
Emilie Ferrier ◽  
Quentin Simonnot ◽  
Laure Poirier ◽  
...  

AbstractUridylation is a widespread modification destabilizing eukaryotic mRNAs. Yet, molecular mechanisms underlying TUTase-mediated mRNA degradation remain mostly unresolved. Here, we report that the Arabidopsis TUTase URT1 participates in a molecular network connecting several translational repressors/decapping activators. URT1 directly interacts with DECAPPING 5 (DCP5), the Arabidopsis ortholog of human LSM14 and yeast Scd6, and this interaction connects URT1 to additional decay factors like DDX6/Dhh1-like RNA helicases. Nanopore direct RNA sequencing reveals a global role of URT1 in shaping poly(A) tail length, notably by preventing the accumulation of excessively deadenylated mRNAs. Based on in vitro and in planta data, we propose a model that explains how URT1 could reduce the accumulation of oligo(A)-tailed mRNAs both by favoring their degradation and because 3’ terminal uridines intrinsically hinder deadenylation. Importantly, preventing the accumulation of excessively deadenylated mRNAs avoids the biogenesis of illegitimate siRNAs that silence endogenous mRNAs and perturb Arabidopsis growth and development.


Sign in / Sign up

Export Citation Format

Share Document