Synthesis, characterizations and kinetics of MOF‐5 as herbicide vehicle and its controlled release in PVA/ST biodegradable composite membranes

Author(s):  
Shaoxiang Lee ◽  
Guohui Wang ◽  
Nana Ji ◽  
Meng Zhang ◽  
Dong Wang ◽  
...  
Author(s):  
Félix M. Pereira ◽  
Adilson R. Gonçalves ◽  
André Ferraz ◽  
Flávio T. Silva ◽  
Samuel C. Oliveira

2005 ◽  
Vol 284-286 ◽  
pp. 811-814 ◽  
Author(s):  
Toshiki Itoh ◽  
Seiji Ban ◽  
T. Watanabe ◽  
Shozo Tsuruta ◽  
Takahiro Kawai ◽  
...  

It is well known that bone morphogenetic protein (BMP) induces bone formation and requires for carriers. Poly-lactic acid / poly-glycolic acid (PLGA) is frequently used as the carriers of BMP. We developed a biodegradable composite PLGA membrane, which was containing oriented needle-like apatite with BMP. The composite membranes were implanted into the thigh muscle pouch of 3-week-old-mice. At 3 weeks after implantation, the implanted area was observed by optical microscopy. The composite membrane containing oriented needle-like apatite with BMP induced new bone formation. It seems that this composite membrane might be a scaffold of BMP and promoting the healing of bone defects.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 499 ◽  
Author(s):  
Panjie Guo ◽  
Fen Wang ◽  
Tongtong Duo ◽  
Zhihong Xiao ◽  
Airong Xu ◽  
...  

With the rapid exhaustion of fossil resources, and environmental pollution relative to the use of fossil-based products, developing eco-friendly products using biomass and/or biodegradable resources is becoming increasingly conspicuous. In this study, ecofriendly and biodegradable composite membranes containing varying MC/PLA (methylcellulose/polylactic acid) mass ratios were prepared. The properties and structures of the MC/PLA membranes were studied by mechanical testing, 13C NMR techniques, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and hot compression. The MC/PLA membranes displayed markedly improved tensile strength and elongation at the MC/PLA mass ratio range of 99:1 to 9:1. The tensile strength and elongation of the MC/PLA (97:3) membrane was found to be the optimum, at 30% and 35% higher than the neat MC, respectively. It was also found that hot compression could improve the tensile strength and elongation of the membranes. At the same time, the membranes showed enough good thermal stability. In addition, the effect of MC/PLA mass ratio on morphologies of the membranes were studied by microscopy technique.


2020 ◽  
Vol 190 ◽  
pp. 105566 ◽  
Author(s):  
Chou Wu ◽  
Xianfen Lou ◽  
Aimin Huang ◽  
Min Zhang ◽  
Lin Ma

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Kazimiera H. Bodek ◽  
Karolina M. Nowak ◽  
Marcin Kozakiewicz ◽  
Andrzej Bodek ◽  
Marta Michalska

The aim of this study was to describe the mechanical and sorption features of homogeneous and composite membranes which consist of microcrystalline chitosan (MCCh) and fibrin (Fb) in various proportions as well as thein vitrokinetics of platelet-derived growth factor-BB (PDGF-BB) released from ten types of membranes in the presence or absence of amoxicillin (Am). The films were characterized by Fourier transform infrared (FTIR) spectroscopy, mechanical tests: breaking strength (Bs) and elongation at break (Eb), as well as SEM images, and swelling study. The influence of the form of samples (dry or wet) on Young’s modulus (E) was also examined. The homogeneous MCCh (M1) and composite M3 and M4 (MCCh : Fb = 2 : 1 and 1 : 1) membranes were characterized by good sorption properties and higher mechanical strength, when compared with Fb (M2) membrane. Connecting MCCh with Fb decreases release of PDGF-BB and increases release of Am. The most efficient release of PDGF-BB was observed in the case of M4 (the optimum MCCh : Fb ratio was 1 : 1) membrane. It was found that the degree of PDGF-BB release from the membrane is influenced by the physicochemical and mechanical characteristics of the films and by its affinity to growth factor PDGF-BB.


2019 ◽  
Vol 19 ◽  
pp. 100367 ◽  
Author(s):  
Anindita Laha ◽  
Mrunalini K. Gaydhane ◽  
Chandra S. Sharma ◽  
Saptarshi Majumdar

Sign in / Sign up

Export Citation Format

Share Document