Propagation of Alfvén Waves in an Isothermal Atmosphere Including the Effects of Displacement Currents

Author(s):  
V. Srinvasan ◽  
P. Kandaswamy ◽  
L. Debnath
2007 ◽  
Vol 25 (10) ◽  
pp. 2159-2165 ◽  
Author(s):  
R. Pottelette ◽  
M. Malingre ◽  
J. J. Berthelier ◽  
E. Seran ◽  
M. Parrot

Abstract. Recent observations performed by the French DEMETER satellite at altitudes of about 710 km suggest that the generation of equatorial plasma bubbles correlates with the presence of filamentary structures of field aligned currents carried by Alfvén waves. These localized structures are located at the bubble edges. We study the dynamics of the equatorial plasma bubbles, taking into account that their motion is dictated by gravity driven and displacement currents. Ion-polarization currents appear to be crucial for the accurate description of the evolution of plasma bubbles in the high altitude ionosphere. During their eastward/westward motion the bubbles intersect gravity driven currents flowing transversely with respect to the background magnetic field. The circulation of these currents is prohibited by large density depressions located at the bubble edges acting as perfect insulators. As a result, in these localized regions the transverse currents have to be locally closed by field aligned currents. Such a physical process generates kinetic Alfvén waves which appear to be stationary in the plasma bubble reference frame. Using a two-dimensional model and "in situ" wave measurements on board the DEMETER spacecraft, we give estimates for the magnitude of the field aligned currents and the associated Alfvén fields.


1993 ◽  
Vol 16 (4) ◽  
pp. 811-816 ◽  
Author(s):  
H. Y. Alkahby

In this paper, we will investigate the heating of the solar corona by the resonant absorption of Alfven waves in a viscous and isothermal atmosphere permeated by a horizontal magnetic field. It is shown that if the viscosity dominates the motion in a high (low)-βplasma, it creates an absorbing and reflecting layer and the heating process is acoustic (magnetoacoustic). When the magnetic field dominates the oscillatory process it creates a non-absorbing reflecting layer. Consequently, the heating process is magnetohydrodynamic. An equation for resonance is derived. It shows that resonances may occur for many values of the frequency and of the magnetic field if the wavelength is matched with the strength of the magnetic field. At the resonance frequencies, magnetic and kinetic energies will increase to very large values which may account for the heating process. When the motion is dominated by the combined effects of the viscosity and the magnetic field, the nature of the reflecting layer and the magnitude of the reflection coefficient depend on the relative strengths of the magnetic field and the viscosity.


1999 ◽  
Vol 22 (1) ◽  
pp. 161-169 ◽  
Author(s):  
Hadi Yahya Alkahby ◽  
M. A. Mahrous

In this article, we investigate the combined effects of viscosity and Ohmic electrical conductivity on upward and downward propagation oblique Alfvén waves in an isothermal atmosphere. It is shown that the presence and direction of the magnetic field play an important role in the structure and the heating mechanism of solar atmosphere. In addition, the atmosphere can be divided into two distinct regions connected by a transition region. In the lower region, the solution can be written as a linear combination of an upward and a downward propagation wave with unequal wavelengths. In the upper region, the solution decays exponentially with the altitude. Moreover, the magnetic field creates a reflecting and a non-absorbing transition region. On the contrary, the viscosity and Ohmic electrical conductivity produce a reflecting and an absorbing transition region. The nature of the transition region depends on the relative strength of the viscous diffusivity with respect to the resistive diffusivity and on the direction of the magnetic field. A unique solution is determined. The reflection coefficient and damping factors are derived and the conclusions are discussed in connection with the nature of the heating mechanism of the solar atmosphere.


1997 ◽  
Vol 20 (3) ◽  
pp. 605-610
Author(s):  
Hadi Yahya Alkahby

In this article we will investigate reflection and dissipation of Alfvén waves, resulting from a uniform vertical magnetic field, in a viscous, resistive and isothermal atmosphere. It is shown that the atmosphere may be divided into two distinct regions connected by an absorbing and reflecting transition layer. In the transition layer the reflection, dissipation and absorption of the magnetic energy of the waves take place and in it the kinematic viscosity changes from small to large values. In the lower region the effect of the resistive diffusivity and kinematic viscosity changes from small to large values. In the lower region the effect of the resistive diffusivity and kinematic viscosity is negligible and in it the solution can be represented as a linear combination of two, incident and reflected, propagating waves with different wavelengths and different dissipative factors. In the upper region the effect of the resistive diffusivity and kinematic viscosity is large and the solution, which satisfies the prescribed boundary conditions, will behave as a constant. The reflection coefficient, the dissipative factors are determined and the conclusions are discussed in connection with solar heating.


1996 ◽  
Vol 19 (3) ◽  
pp. 587-594
Author(s):  
H. Y. Alkahby

In this paper we will examine the reflection and dissipation of Alfvén waves, resulting from a uniform vertical magnetic field, in an inviscid, resistive and isothermal atmosphere. An equation for the damping length distance that wave can travel at Alfvén speed is derived. This equation shows that the damping length is proportional to the wave number and the density scale height and it is valid not only for Alfvén waves but also for any wave that travels at Alfvén speed. Moreover, it is shown that the atmosphere may be divided into two distinct regions connected by an absorbing and reflecting transition region. In the lower region the solution can be represented as a linear combination of two, incident and reflected, propagating waves with the same wavelengths and the same dissipative factors. In the upper region the effect of the resistive diffusivity and Alfvén speed is large and the solution, which satisfies the prescribed boundary conditions, either decays with altitude or behaves as a constant. In the transition region the reflection, dissipation and absorption of the magnetic energy of the waves take place. The reflection coefficient, the dissipative factors, which are proportional to the damping length, are determined and the conclusions are discussed in connection with heating of the solar atmosphere.


Sign in / Sign up

Export Citation Format

Share Document