Reflection and trapping of transient Alfven waves propagating in an isothermal atmosphere with constant gravity and uniform magnetic field

1989 ◽  
Vol 345 ◽  
pp. 597 ◽  
Author(s):  
C.-H. An ◽  
Z. E. Musielak ◽  
R. L. Moore ◽  
S. T. Suess
1993 ◽  
Vol 16 (4) ◽  
pp. 811-816 ◽  
Author(s):  
H. Y. Alkahby

In this paper, we will investigate the heating of the solar corona by the resonant absorption of Alfven waves in a viscous and isothermal atmosphere permeated by a horizontal magnetic field. It is shown that if the viscosity dominates the motion in a high (low)-βplasma, it creates an absorbing and reflecting layer and the heating process is acoustic (magnetoacoustic). When the magnetic field dominates the oscillatory process it creates a non-absorbing reflecting layer. Consequently, the heating process is magnetohydrodynamic. An equation for resonance is derived. It shows that resonances may occur for many values of the frequency and of the magnetic field if the wavelength is matched with the strength of the magnetic field. At the resonance frequencies, magnetic and kinetic energies will increase to very large values which may account for the heating process. When the motion is dominated by the combined effects of the viscosity and the magnetic field, the nature of the reflecting layer and the magnitude of the reflection coefficient depend on the relative strengths of the magnetic field and the viscosity.


1999 ◽  
Vol 22 (1) ◽  
pp. 161-169 ◽  
Author(s):  
Hadi Yahya Alkahby ◽  
M. A. Mahrous

In this article, we investigate the combined effects of viscosity and Ohmic electrical conductivity on upward and downward propagation oblique Alfvén waves in an isothermal atmosphere. It is shown that the presence and direction of the magnetic field play an important role in the structure and the heating mechanism of solar atmosphere. In addition, the atmosphere can be divided into two distinct regions connected by a transition region. In the lower region, the solution can be written as a linear combination of an upward and a downward propagation wave with unequal wavelengths. In the upper region, the solution decays exponentially with the altitude. Moreover, the magnetic field creates a reflecting and a non-absorbing transition region. On the contrary, the viscosity and Ohmic electrical conductivity produce a reflecting and an absorbing transition region. The nature of the transition region depends on the relative strength of the viscous diffusivity with respect to the resistive diffusivity and on the direction of the magnetic field. A unique solution is determined. The reflection coefficient and damping factors are derived and the conclusions are discussed in connection with the nature of the heating mechanism of the solar atmosphere.


1978 ◽  
Vol 20 (1) ◽  
pp. 137-148 ◽  
Author(s):  
B. I. Meerson ◽  
A. B. Mikhallovskii ◽  
O. A. Pokhotelov

Resonant excitation of Alfvén waves by fast particles in a finite pressure plasma in a non-uniform magnetic field is studied. Plasma compressibility in the wave field is determined both by the curvature of the magnetic lines of force and finite Larmor radius of fast particles. A general expression for the instability growth rate is obtained and analyzed; the applicability of the results obtained in the previous paper has also been studied. The finite pressure stabilization of the trapped particles instability has been found. The bounce-resonance effects are analyzed.


2015 ◽  
Vol 120 (12) ◽  
pp. 10,384-10,403 ◽  
Author(s):  
Kazue Takahashi ◽  
Colin Waters ◽  
Karl-Heinz Glassmeier ◽  
Craig A. Kletzing ◽  
William S. Kurth ◽  
...  

1985 ◽  
Vol 107 ◽  
pp. 559-559
Author(s):  
V. A. Mazur ◽  
A. V. Stepanov

It is shown that the existence of plasma density inhomogeneities (ducts) elongated along the magnetic field in coronal loops, and of Alfven wave dispersion, associated with the taking into account of gyrotropy U ≡ ω/ωi ≪ 1 (Leonovich et al., 1983), leads to the possibility of a quasi-longitudinal k⊥ < √U k‖ propagation (wave guiding) of Alfven waves. Here ω is the frequency of Alfven waves, ωi is the proton gyrofrequency, and k is the wave number. It is found that with the parameter ξ = ω2 R/ωi A > 1, where R is the inhomogeneity scale of a loop across the magnetic field, and A is the Alfven wave velocity, refraction of Alfven waves does not lead, as contrasted to Wentzel's inference (1976), to the waves going out of the regime of quasi-longitudinal propagation. As the result, the amplification of Alfven waves in solar coronal loops can be important. A study is made of the cyclotron instability of Alfven waves under solar coronal conditions.


1997 ◽  
Vol 14 (2) ◽  
pp. 170-178 ◽  
Author(s):  
N. F. Cramer ◽  
S. V. Vladimirov

AbstractDust particles in a plasma can be higWy charged, and can carry a proportion of the negative charge of the plasma. Even if this proportion is quite small, as in interstellar dusty clouds, it can have a large effect on hydromagnetic Alfvén waves propagating at frequencies well below the ion–cyclotron frequency. In particular, the right-hand circularly polarised mode experiences a cutoff due to the presence of the dust. We generalise previous work on Alfvén waves in dusty interstellar plasmas by considering the general dispersion relation for waves propagating at an arbitrary angle with respect to the magnetic field. Wave energy propagating at oblique angles to the magnetic field in an increasing density gradient can be very efficiently damped by the Alfvén resonance absorption process in a dusty plasma, and we consider this damping mechanism for waves in interstellar clouds.


2007 ◽  
Vol 33 (5) ◽  
pp. 407-419 ◽  
Author(s):  
A. B. Mikhailovskii ◽  
E. A. Kovalishen ◽  
M. S. Shirokov ◽  
V. S. Tsypin ◽  
R. M. O. Galvão

Sign in / Sign up

Export Citation Format

Share Document