Development of Internal Controls for Probe-Based Nucleic Acid Diagnostic Assays

1999 ◽  
Vol 270 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Bernard C. Courtney ◽  
Malcolm M. Smith ◽  
Erik A. Henchal
2020 ◽  
Author(s):  
Hayden C. Metsky ◽  
Nicole L. Welch ◽  
Nicholas J. Haradhvala ◽  
Laurie Rumker ◽  
Yibin B. Zhang ◽  
...  

AbstractHarnessing genomic data and predictive models will provide activity-informed diagnostic assays for thousands of viruses and offer rapid design for novel ones. Here we develop and extensively validate new algorithms that design nucleic acid assays having maximal predicted detection activity over a virus’s full genomic diversity with stringent specificity. Focusing on CRISPR-Cas13a detection, we test a library of ~ 19,000 guide-target pairs and construct a convolutional neural network that predicts Cas13a detection activity better than other techniques. We link our methods by building ADAPT, an end-to-end system that automatically leverages the latest viral genome data. We designed optimal species-specific assays for the 1,933 vertebrate-infecting viral species within 2 hours for most species and 24 hours for all but 3. ADAPT’s designs are sensitive and specific down to the lineage-level for the range of taxa we tested, including ones that pose challenges involving genomic diversity and specificity. They also exhibit significantly higher fluorescence and lower limits of detection, across a virus’s full spectrum of genomic diversity, than designs from standard techniques. ADAPT is available in an accessible software package and can be applied to other detection technologies to enhance critically-needed viral diagnostic and surveillance efforts.


Author(s):  
Melis N. Anahtar ◽  
Bennett Shaw ◽  
Damien Slater ◽  
Elizabeth H Byrne ◽  
Yolanda Botti-Lodovico ◽  
...  

Developing and deploying new diagnostic tests is difficult, but the need to do so in response to a rapidly emerging pandemic such as COVID-19 is crucially important for an effective response. In the early stages of a pandemic, laboratories play a key role in helping health care providers and public health authorities detect active infection, a task most commonly achieved using nucleic acid-based assays. While the landscape of diagnostics is rapidly evolving, polymerase chain reaction (PCR) remains the gold-standard of nucleic acid-based diagnostic assays, in part due to its reliability, flexibility, and wide deployment. To address a critical local shortage of testing capacity persisting during the COVID-19 outbreak, our hospital set up a molecular based laboratory developed test (LDT) to accurately and safely diagnose SARS-CoV-2. We describe here the process of developing an emergency-use LDT, in the hope that our experience will be useful to other laboratories in future outbreaks and will help to lower barriers to fast and accurate diagnostic testing in crisis conditions.


2021 ◽  
pp. jclinpath-2020-207128
Author(s):  
Melis N Anahtar ◽  
Bennett M Shaw ◽  
Damien Slater ◽  
Elizabeth H Byrne ◽  
Yolanda Botti-Lodovico ◽  
...  

Developing and deploying new diagnostic tests are difficult, but the need to do so in response to a rapidly emerging pandemic such as COVID-19 is crucially important. During a pandemic, laboratories play a key role in helping healthcare providers and public health authorities detect active infection, a task most commonly achieved using nucleic acid-based assays. While the landscape of diagnostics is rapidly evolving, PCR remains the gold-standard of nucleic acid-based diagnostic assays, in part due to its reliability, flexibility and wide deployment. To address a critical local shortage of testing capacity persisting during the COVID-19 outbreak, our hospital set up a molecular-based laboratory developed test (LDT) to accurately and safely diagnose SARS-CoV-2. We describe here the process of developing an emergency-use LDT, in the hope that our experience will be useful to other laboratories in future outbreaks and will help to lower barriers to establishing fast and accurate diagnostic testing in crisis conditions.


2014 ◽  
Vol 208 ◽  
pp. 21-25 ◽  
Author(s):  
Jae-Ik Han ◽  
Shien-Young Kang ◽  
Kyoung-Jin Yoon ◽  
Ki-Jeong Na

2021 ◽  
Author(s):  
Frank Myers ◽  
Brian Moffatt ◽  
Ragheb El Khaja ◽  
Titash Chatterjee ◽  
Gurmeet Marwaha ◽  
...  

The COVID-19 pandemic has highlighted the need for broader access to molecular diagnostics. Colorimetric isothermal nucleic acid amplification assays enable simplified instrumentation over more conventional PCR diagnostic assays and, as such, represent a promising approach for addressing this need. In particular, colorimetric LAMP (loop-mediated isothermal amplification) has received a great deal of interest recently. However, there do not currently exist robust instruments for performing these kinds of assays in high throughput with real-time readout of amplification signals. To address this need, we developed LARI, the LAMP Assay Reader Instrument. We have deployed over 50 LARIs for routine use in R&D and production environments, with over 12,000 assays run to date. In this paper, we present the design and construction of LARI along with thermal, optical, and assay performance characteristics. LARI can be produced for under $1500 and has broad applications in R&D, point-of-care diagnostics, and global health.


Sign in / Sign up

Export Citation Format

Share Document