On Using the Quantum Mechanical Path Integral in Quantum Field Theory

1993 ◽  
Vol 224 (1) ◽  
pp. 139-154 ◽  
Author(s):  
D.G.C. Mckeon
1994 ◽  
Vol 09 (23) ◽  
pp. 2167-2178 ◽  
Author(s):  
D.G.C. MCKEON ◽  
T.N. SHERRY

It has been shown how evaluation of matrix elements of the form <x| exp −iHt|y> using the quantum mechanical path-integral allows one to determine radiative corrections in quantum field theory without encountering loop momentum integrals. In this paper we show how this technique can be applied when there is a constant background magnetic field contributing to the “Hamiltonian” H.


2006 ◽  
Vol 21 (03) ◽  
pp. 405-447 ◽  
Author(s):  
MASSIMO DI PIERRO

The lattice formulation provides a way to regularize, define and compute the Path Integral in a Quantum Field Theory. In this paper, we review the theoretical foundations and the most basic algorithms required to implement a typical lattice computation, including the Metropolis, the Gibbs sampling, the Minimal Residual, and the Stabilized Biconjugate inverters. The main emphasis is on gauge theories with fermions such as QCD. We also provide examples of typical results from lattice QCD computations for quantities of phenomenological interest.


2021 ◽  
Author(s):  
Wim Vegt

Quantum Light Theory (QLT) is the development in Quantum Field Theory (QFT). In Quantum Field Theory, the fundamental interaction fields are replacing the concept of elementary particles in Classical Quantum Mechanics. In Quantum Light Theory the fundamental interaction fields are being replaced by One Single Field. The Electromagnetic Field, generally well known as Light. To realize this theoretical concept, the fundamental theory has to go back in time 300 years, the time of Isaac Newton to follow a different path in development. Nowadays experiments question more and more the fundamental concepts in Quantum Field Theory and Classical Quantum Mechanics. The publication “Operational Resource Theory of Imaginarity“ in “Physical Review Letters” in 2021 (Ref. [2]) presenting the first experimental evidence for the measurability of “Quantum Mechanical Imaginarity” directly leads to the fundamental question in this experiment: How is it possible to measure the imaginary part of “Quantum Physical Probability Waves”? This publication provides an unambiguously answer to this fundamental question in Physics, based on the fundamental “Gravitational Electromagnetic Interaction” force densities. The “Quantum Light Theory” presents a new “Gravitational-Electromagnetic Equation” describing Electromagnetic Field Configurations which are simultaneously the Mathematical Solutions for the Quantum Mechanical “Schrodinger Wave Equation” and more exactly the Mathematical Solutions for the “Relativistic Quantum Mechanical Dirac Equation”. The Mathematical Solutions for the “Gravitational-Electromagnetic Equation” carry Mass, Electric Charge and Magnetic Spin at discrete values.


Sign in / Sign up

Export Citation Format

Share Document