Characterization of Human Autoantibodies Reactive to Gastric Parietal Cells

1993 ◽  
Vol 190 (1) ◽  
pp. 207-214 ◽  
Author(s):  
X.H. Wang ◽  
Y. Miyazaki ◽  
Y. Shinomura ◽  
Y. Moriyama ◽  
R.K. Nakamoto ◽  
...  
1985 ◽  
Vol 231 (3) ◽  
pp. 641-649 ◽  
Author(s):  
B H Hirst ◽  
J G Forte

When isolated from resting parietal cells, the majority of the (H+ + K+)-ATPase activity was recovered in the microsomal fraction. These microsomal vesicles demonstrated a low K+ permeability, such that the addition of valinomycin resulted in marked stimulation of (H+ + K+)-ATPase activity, and proton accumulation. When isolated from stimulated parietal cells, the (H+ + K+)-ATPase was redistributed to larger, denser vesicles: stimulation-associated (s.a.) vesicles. S.a. vesicles showed an increased K+ permeability, such that maximal (H+ + K+)-ATPase and proton accumulation activities were observed in low K+ concentrations and no enhancement of activities occurred on the addition of valinomycin. The change in subcellular distribution of (H+ + K+)-ATPase correlated with morphological changes observed with stimulation of parietal cells, the microsomes and s.a. vesicles derived from the intracellular tubulovesicles and the apical plasma membrane, respectively. Total (H+ + K+)-ATPase activity recoverable from stimulated gastric mucosa was 64% of that from resting tissue. Therefore, we tested for latent activity in s.a. vesicles. Permeabilization of s.a. vesicles with octyl glucoside increased (H+ + K+)-ATPase activity by greater than 2-fold. Latent (H+ + K+)-ATPase activity was resistant to highly tryptic conditions (which inactivated all activity in gastric microsomes). About 20% of the non-latent (H+ + K+)-ATPase activity was also resistant to trypsin digestion. We interpret these results as indicating that, of the s.a. vesicles, approx. 55% have a right-side-out orientation and are impermeable to ATP, 10% right-side-out and permeable to ATP, and 35% have an inside-out orientation.


2017 ◽  
Vol 66 (10) ◽  
pp. 2295-2300 ◽  
Author(s):  
Kathrin I. Liszt ◽  
Joachim Hans ◽  
Jakob P. Ley ◽  
Elke Köck ◽  
Veronika Somoza

1995 ◽  
Vol 269 (5) ◽  
pp. G770-G778 ◽  
Author(s):  
P. A. Negulescu ◽  
T. E. Machen

The fluorescent Ca2+ indicator fura 2 was used to measure cytosolic free [Ca2+] ([Ca2+]i) in order to obtain information about relative rates of Ca2+ influx into parietal cells during treatment with carbachol (a cholinergic agonist) or thapsigargin (TG, a Ca(2+)-mobilizing agent) or during reloading of the internal Ca2+ stores. In Ca(2+)-containing solutions, carbachol-, TG-, and reloading-stimulated Ca2+ entry exhibited nearly identical sensitivity to La3+ [inhibition constant (Ki) approximately 10 microM] or low pH (pKi approximately 7.0). In experiments in which carbachol and TG were used, there was no additional increase in [Ca2+]i when TG was added to carbachol-treated cells or when carbachol was added to cells previously treated with TG. Thus it is likely that a single Ca2+ entry pathway serves a signaling function as well as a role in refilling the Ca2+ store during reloading. Because the Ca2+ pathway is exquisitely sensitive to pH and serosal pH increases during stimulant-induced H+ secretion (which is activated by increases in [Ca2+]i), this mechanism will exert positive feedback on parietal cells in the intact stomach. When parietal cells were pretreated with carbachol in Ca(2+)-free solutions, reloading was independent of pH and La3+, suggesting that Ca(2+)-containing solutions should be used to determine the properties of the influx pathway.


1993 ◽  
Vol 289 (1) ◽  
pp. 117-124 ◽  
Author(s):  
S Roche ◽  
J P Bali ◽  
R Magous

The mechanism whereby gastrin-type receptor and muscarinic M3-type receptor regulate free intracellular Ca2+ concentration ([Ca2+]i) was studied in rabbit gastric parietal cells stimulated by either gastrin or carbachol. Both agonists induced a biphasic [Ca2+]i response: a transient [Ca2+]i rise, followed by a sustained steady state depending on extracellular Ca2+. Gastrin and carbachol also caused a rapid and transient increase in Mn2+ influx (a tracer for bivalent-cation entry). Pre-stimulation of cells with one agonist drastically decreased both [Ca2+]i increase and Mn2+ influx induced by the other. Neither diltiazem nor pertussistoxin treatment had any effect on agonist-stimulated Mn2+ entry. Thapsigargin, a Ca(2+)-pump inhibitor, induced a biphasic [Ca2+]i increase, and enhanced the rate of Mn2+ entry. Preincubation of cells with thapsigargin inhibits the [Ca2+]i increase as well as Mn2+ entry stimulated by gastrin or by carbachol. Thapsigargin induced a weak but significant increase in Ins(1,4,5)P3 content, but this agent had no effect on the agonist-evoked Ins(1,4,5)P3 response. In permeabilized parietal cells, Ins(1,4,5)P3 and caffeine caused an immediate Ca2+ release from intracellular pools, followed by a reloading of Ca2+ pools which can be prevented in the presence of thapsigargin. We conclude that (i) gastrin and carbachol mobilize common Ca2+ intracellular stores, (ii) Ca2+ permeability secondary to receptor activation involves neither a voltage-sensitive Ca2+ channel nor a GTP-binding protein from the G1 family, and (iii) agonists regulate common Ca2+ channels in depleting intracellular Ca2+ stores.


1958 ◽  
Vol 14 (6) ◽  
pp. 204-205 ◽  
Author(s):  
D. Birnbaum ◽  
M. Wolman

2003 ◽  
Vol 14 (3) ◽  
pp. 1097-1108 ◽  
Author(s):  
Rihong Zhou ◽  
Zhen Guo ◽  
Charles Watson ◽  
Emily Chen ◽  
Rong Kong ◽  
...  

Actin cytoskeleton plays an important role in the establishment of epithelial cell polarity. Cdc42, a member of Rho GTPase family, modulates actin dynamics via its regulators, such as IQGAP proteins. Gastric parietal cells are polarized epithelial cells in which regulated acid secretion occurs in the apical membrane upon stimulation. We have previously shown that actin isoforms are polarized to different membrane domains and that the integrity of the actin cytoskeleton is essential for acid secretion. Herein, we show that Cdc42 is preferentially distributed to the apical membrane of gastric parietal cells. In addition, we revealed that two Cdc42 regulators, IQGAP1 and IQGAP2, are present in gastric parietal cells. Interestingly, IQGAP2 is polarized to the apical membrane of the parietal cells, whereas IQGAP1 is mainly distributed to the basolateral membrane. An IQGAP peptide that competes with full-length IQGAP proteins for Cdc42-binding in vitro also inhibits acid secretion in streptolysin-O-permeabilized gastric glands. Furthermore, this peptide disrupts the association of IQGAP and Cdc42 with the apical actin cytoskeleton and prevents the apical membrane remodeling upon stimulation. We propose that IQGAP2 forms a link that associates Cdc42 with the apical cytoskeleton and thus allows for activation of polarized secretion in gastric parietal cells.


1989 ◽  
Vol 22 (6) ◽  
pp. 593-603 ◽  
Author(s):  
M. MIZUNO ◽  
T. FUJIMOTO ◽  
K. OGAWA

Sign in / Sign up

Export Citation Format

Share Document