Internalization of the Type I Angiotensin II Receptor (AT1) Is Required for Protein Kinase C Activation But Not for Inositol Trisphosphate Release in the Angiotensin II-Stimulated Rat Adrenal Zona Glomerulosa Cell

1994 ◽  
Vol 204 (3) ◽  
pp. 1292-1298 ◽  
Author(s):  
S. Kapas ◽  
J.P. Hinson ◽  
J.R. Puddefoot ◽  
M.M. Ho ◽  
G.P. Vinson
1995 ◽  
Vol 305 (2) ◽  
pp. 433-438 ◽  
Author(s):  
S Kapas ◽  
A Purbrick ◽  
J P Hinson

The role of protein kinases in the steroidogenic actions of alpha-melanocyte-stimulating hormone (alpha-MSH), angiotensin II (AngII) and corticotropin (ACTH) in the rat adrenal zona glomerulosa was examined. Ro31-8220, a potent selective inhibitor of protein kinase C (PKC), inhibited both AngII- and alpha-MSH-stimulated aldosterone secretion but had no effect on aldosterone secretion in response to ACTH. The effect of Ro31-8220 on PKC activity was measured in subcellular fractions. Basal PKC activity was higher in cytosol than in membrane or nuclear fractions. Incubation of the zona glomerulosa with either alpha-MSH or AngII resulted in significant increases in PKC activity in the nuclear and cytosolic fractions and decreases in the membrane fraction. These effects were all inhibited by Ro31-8220. ACTH caused a significant increase in nuclear PKC activity only, and this was inhibited by Ro31-8220 without any significant effect on the steroidogenic response to ACTH, suggesting that PKC translocation in response to ACTH may be involved in another aspect of adrenal cellular function. Tyrosine phosphorylation has not previously been considered to be an important component of the response of adrenocortical cells to peptide hormones. Both AngII and alpha-MSH were found to activate tyrosine kinase, but ACTH had no effect, observations that have not been previously reported. Tyrphostin 23, a specific antagonist of tyrosine kinases, inhibited aldosterone secretion in response to AngII and alpha-MSH, but not ACTH. These data confirm the importance of PKC in the adrenocortical response to AngII and alpha-MSH, and, furthermore, indicate that tyrosine kinase may play a critical role in the steroidogenic actions of AngII and alpha-MSH in the rat adrenal zona glomerulosa.


1992 ◽  
Vol 282 (1) ◽  
pp. 33-39 ◽  
Author(s):  
S G Chen ◽  
K Murakami

Micromolar concentrations of cis-fatty acid synergistically activate type III protein kinase C with diacylglycerol. This synergistic effect occurs at low concentrations of cis-fatty acid and diacylglycerol, and it is capable of inducing almost full activation of this protein kinase C subtype at a physiologically relevant Ca2+ concentration (2 microM). The synergistic activation mode can be observed even in the absence of Ca2+, but micromolar Ca2+ significantly enhances the type III protein kinase C activation. cis-Fatty acid also augments the diacylglycerol-induced activation of other subtypes (type I and II), although the effect is smaller than that observed in type III. Neither the diacylglycerol- nor the cis-fatty acid-dependent mode of activation can fully activate any of these subtypes at a physiological concentration of Ca2+ (2 microM). Our results suggest that the generation of three second messengers, i.e. the increase in intracellular Ca2+ concentration and the generation of both cis-fatty acid and diacylglycerol in the cell, may be necessary signals for protein kinase C activation, particularly for type III protein kinase C.


1993 ◽  
Vol 265 (4) ◽  
pp. C1100-C1108 ◽  
Author(s):  
R. L. Barnett ◽  
L. Ruffini ◽  
L. Ramsammy ◽  
R. Pasmantier ◽  
M. M. Friedlaender ◽  
...  

Angiotensin II (ANG II) in mesangial cells (MC) promotes phosphatidylinositol (PI) hydrolysis resulting in diacylglycerol (DAG)-mediated increases in protein kinase C (PKC) activity. The paucity of MC inositol lipid prompted us to consider whether phosphatidylcholine (PC) could sustain DAG formation. ANG II released choline and increased phosphatidylethanol (PEt) via PC-phospholipase D (PC-PLD). ANG II also stimulated phosphorylcholine consequent to PC-phospholipase C (PC-PLC) activation. ANG II-mediated PC hydrolysis augmented DAG for 30 min. PC breakdown was influenced by extracellular Ca2+, because Ni2+ partially inhibited ANG II-induced PEt and obliterated agonist-mediated DAG formation. The consequence of Ca2+ modulation of PC metabolism was investigated by measuring PKC activity. Ni2+ had no effect on early (PI-associated) activation by ANG II at 90 s but obviated translocation from cytosol to the membrane at 10 min. The pathway responsible for PC-associated DAG was studied in PKC downregulated cells. Whereas downregulation prevented PLD-mediated PEt elevation, ANG II-stimulated DAG formation in myristate-labeled cells was unaltered, indicating PC-PLC activation. In summary, ANG II stimulates PC-PLD and PC-PLC in MC. PC-PLD is tightly regulated by PKC, whereas PC-PLC is stringently controlled by extracellular Ca2+. ANG II mediated PC breakdown principally via PC-PLC provides a mechanism for maintaining elevated DAG levels and PKC activation.


Sign in / Sign up

Export Citation Format

Share Document