The Effects of Ruthenium Red, an Inhibitor of Calcium-Induced Calcium Release, on Phasic Myometrial Contractions

1996 ◽  
Vol 221 (3) ◽  
pp. 656-661 ◽  
Author(s):  
Mark Phillippe ◽  
Andrew Basa
1992 ◽  
Vol 3 (6) ◽  
pp. 621-631 ◽  
Author(s):  
A Verma ◽  
D J Hirsch ◽  
S H Snyder

Calcium-induced calcium release (CICR) pools have been demonstrated in brain and heart microsomes biochemically and autoradiographically by the sensitivity of 45Ca2+ accumulation to Mg2+, ATP, ruthenium red, caffeine, and tetracaine. The CICR pool colocalizes with [3H]ryanodine binding sites, supporting the notion that [3H]ryanodine labels CICR pools. Sites of CICR pools in the brain contrast with those of inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pools with reciprocal localizations between the two Ca2+ pools in several structures. Thus, in the hippocampus CA-1 is enriched in IP3-sensitive Ca2+ pools, whereas CICR pools are highest in CA-3 and the dentate gyrus. The corpus striatum and cerebellum are enriched in IP3 pools, whereas the medial septum and olfactory bulb have high CICR densities. In cardiac tissue, CICR is localized to atrial and ventricular muscle, whereas IP3 pools are concentrated in coronary vessels and cardiac conduction fibers. The reciprocal enrichment of IP3 and CICR Ca2+ pools implies differential regulation of Ca2+ hemostasis in these tissues.


1992 ◽  
Vol 3 (12) ◽  
pp. 1415-1425 ◽  
Author(s):  
K P Currie ◽  
K Swann ◽  
A Galione ◽  
R H Scott

The effects of intracellular application of two novel Ca2+ releasing agents have been studied in cultured rat dorsal root ganglion (DRG) neurones by monitoring Ca(2+)-dependent currents as a physiological index of raised free cytosolic Ca2+ ([Ca2+]i). A protein based sperm factor (SF) extracted from mammalian sperm, has been found to trigger Ca2+ oscillations and to sensitize unfertilized mammalian eggs to calcium induced calcium release (CICR). In this study intracellular application of SF activated Ca(2+)-dependent currents in approximately two-thirds of DRG neurones. The SF induced activity was abolished by heat treatment, attenuated by increasing the intracellular Ca2+ buffering capacity of the cells and persisted when extracellular Ca2+ was replaced by Ba2+. In addition, activity could be triggered or potentiated by loading the cells with Ca2+ by activating a series of voltage-gated Ca2+ currents. Ca(2+)-activated inward current activity was also generated by intracellular application of cyclic ADP-ribose (cADPR), a metabolite of NAD+, which causes Ca2+ release in sea urchin eggs. This activity could also be enhanced by loading the cells with Ca2+. The cADPR induced activity, but not the SF induced activity, was abolished by depleting the caffeine sensitive Ca2+ store. Ruthenium red markedly attenuated SF induced activity but had little action on cADPR induced activity or caffeine induced activity. Our results indicate that both SF and cADPR release intracellular Ca2+ pools in DRG neurones and that they appear to act on subtly distinct stores or distinct intracellular Ca2+ release mechanisms, possibly by modulating CICR.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Natsumi Miyazaki ◽  
Takayuki Kobayashi ◽  
Takako Komiya ◽  
Toshio Okada ◽  
Yusuke Ishida ◽  
...  

Abstract Background Malignant hyperthermia (MH) is a rare genetic disease characterized by the development of very serious symptoms, and hence prompt and appropriate treatment is required. However, postoperative MH is very rare, representing only 1.9% of cases as reported in the North American Malignant Hyperthermia Registry (NAMHR). We report a rare case of a patient who developed sudden postoperative hyperthermia after mastectomy, which was definitively diagnosed as MH by the calcium-induced calcium release rate (CICR) measurement test. Case presentation A 61-year-old Japanese woman with a history of stroke was hospitalized for breast cancer surgery. General anesthesia was introduced by propofol, remifentanil, and rocuronium. After intubation, anesthesia was maintained using propofol and remifentanil, and mastectomy and muscle flap reconstruction surgery was performed and completed without any major problems. After confirming her spontaneous breathing, sugammadex was administered and she was extubated. Thereafter, systemic shivering and masseter spasm appeared, and a rapid increase in body temperature (maximum: 38.9 °C) and end-tidal carbon dioxide (ETCO2) (maximum: 59 mmHg) was noted. We suspected MH and started cooling the body surface of the axilla, cervix, and body trunk, and administered chilled potassium-free fluid and dantrolene. After her body temperature dropped and her shivering improved, dantrolene administration was ended, and finally she was taken to the intensive care unit (ICU). Body cooling was continued within the target range of 36–37 °C in the ICU. No consciousness disorder, hypotension, increased serum potassium level, metabolic acidosis, or cola-colored urine was observed during her ICU stay. Subsequently, her general condition improved and she was discharged on day 12. Muscle biopsy after discharge was performed and provided a definitive diagnosis of MH. Conclusions The occurrence of MH can be life-threatening, but its frequency is very low, and genetic testing and muscle biopsy are required to confirm the diagnosis. On retrospective evaluation using the malignant hyperthermia scale, the present case was almost certainly that of a patient with MH. Prompt recognition and immediate treatment with dantrolene administration and body cooling effectively reversed a potentially fatal syndrome. This was hence a valuable case of a patient with postoperative MH that led to a confirmed diagnosis by CICR.


2012 ◽  
Vol 32 (12) ◽  
pp. 4271-4283 ◽  
Author(s):  
Z. Qin ◽  
X. Zhou ◽  
M. Gomez-Smith ◽  
N. R. Pandey ◽  
K. F. H. Lee ◽  
...  

2008 ◽  
Vol 32 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Willmann Liang

This teaching paper utilizes the materials presented by Dr. Fabiato in his review article entitled “Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum.” In the review, supporting evidence of calcium-induced calcium release (CICR) is presented. Data concerning potential objections to the CICR theory are discussed as well. In closing, technical issues associated with the skinned cell model are mentioned. Based on this review article, teaching and learning points are put forth in this article to highlight two concepts: 1) the regulatory mechanisms of CICR in cardiomyocytes and 2) the recognition of contradicting hypotheses and limitations in experimental design. The first concept is certainly an important one for physiology students. The second concept is universally applicable to researchers in all fields of science. It is thus the aim of this article to cultivate a rewarding teaching and learning experience for both instructors and students.


2005 ◽  
Vol 288 (4) ◽  
pp. F785-F791 ◽  
Author(s):  
Susan K. Fellner ◽  
William J. Arendshorst

ANG II induces a rise in cytosolic Ca2+ ([Ca2+]i) in vascular smooth muscle (VSM) cells via inositol trisphosphate receptor (IP3R) activation and release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ signal is augmented by calcium-induced calcium release (CICR) and by cyclic adeninediphosphate ribose (cADPR), which sensitizes the ryanodine-sensitive receptor (RyR) to Ca2+ to further amplify CICR. cADPR is synthesized from β-nicotinamide adenine dinucleotide (NAD+) by a membrane-bound bifunctional enzyme, ADPR cyclase. To investigate the possibility that ANG II activates the ADPR cyclase of afferent arterioles, we used inhibitors of the IP3R, RyR, and ADPR cyclase. Afferent arterioles were isolated from rat kidney with the magnetized microsphere and sieving technique and loaded with fura-2 to measure [Ca2+]i. In Ca2+-containing buffer, ANG II increased [Ca2+]i by 125 ± 10 nM. In the presence of the IP3R antagonists TMB-8 and 2-APB, the peak responses to ANG II were reduced by 74 and 81%, respectively. The specific antagonist of cADPR 8-Br ADPR and a high concentration of ryanodine (100 μM) inhibited the ANG II-induced increases in [Ca2+]i by 75 and 69%, respectively. Nicotinamide and Zn2+ are known inhibitors of the VSM ADPR cyclase. Nicotinamide diminished the [Ca2+]i response to ANG II by 66%. In calcium-free buffer, Zn2+ reduced the ANG II response by 68%. Simultaneous blockade of the IP3 and cADPR pathways diminished the [Ca2+]i response to ANG II by 83%. We conclude that ANG II initiates Ca2+ mobilization from the SR in afferent arterioles via the classic IP3R pathway and that ANG II may lead to activation of the ADPR cyclase to form cADPR, which, via its action on the RyR, substantially augments the Ca2+ response.


1991 ◽  
Vol 97 (5) ◽  
pp. 845-884 ◽  
Author(s):  
L Csernoch ◽  
G Pizarro ◽  
I Uribe ◽  
M Rodríguez ◽  
E Ríos

Four manifestations of excitation-contraction (E-C) coupling were derived from measurements in cut skeletal muscle fibers of the frog, voltage clamped in a Vaseline-gap chamber: intramembranous charge movement currents, myoplasmic [Ca2+] transients, flux of calcium release from the sarcoplasmic reticulum (SR), and the intrinsic optical transparency change that accompanies calcium release. In attempts to suppress Ca release by direct effects on the SR, three interventions were applied: (a) a conditioning pulse that causes calcium release and inhibits release in subsequent pulses by Ca-dependent inactivation; (b) a series of brief, large pulses, separated by long intervals (greater than 700 ms), which deplete Ca2+ in the SR; and (c) intracellular application of the release channel blocker ruthenium red. All these reduced calcium release flux. None was expected to affect directly the voltage sensor of the T-tubule; however, all of them reduced or eliminated a component of charge movement current with the following characteristics: (a) delayed onset, peaking 10-20 ms into the pulse; (b) current reversal during the pulse, with an inward phase after the outward peak; and (c) OFF transient of smaller magnitude than the ON, of variable polarity, and sometimes biphasic. When the total charge movement current had a visible hump, the positive phase of the current eliminated by the interventions agreed with the hump in timing and size. The component of charge movement current blocked by the interventions was greater and had a greater inward phase in slack fibers with high [EGTA] inside than in stretched fibers with no EGTA. Its amplitude at -40 mV was on average 0.26 A/F (SEM 0.03) in slack fibers. The waveform of release flux determined from the Ca transients measured simultaneously with the membrane currents had, as described previously (Melzer, W., E. Ríos, and M. F. Schneider. 1984. Biophysical Journal. 45:637-641), an early peak followed by a descent to a steady level during the pulse. The time at which this peak occurred was highly correlated with the time to peak of the current suppressed, occurring on average 6.9 ms later (SEM 0.73 ms). The current suppressed by the above interventions in all cases had a time course similar to the time derivative of the release flux; specifically, the peak of the time derivative of release flux preceded the peak of the current suppressed by 0.7 ms (SEM 0.6 ms). The magnitude of the current blocked was highly correlated with the inhibitory effect of the interventions on Ca2+ release flux.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document