Serum Amyloid A Induces Chemotaxis of Human Mast Cells by Activating a Pertussis Toxin-Sensitive Signal Transduction Pathway

1999 ◽  
Vol 254 (1) ◽  
pp. 143-146 ◽  
Author(s):  
Niclas Olsson ◽  
Agneta Siegbahn ◽  
Gunnar Nilsson
1996 ◽  
Vol 15 (18) ◽  
pp. 4928-4939 ◽  
Author(s):  
Y. Tagaya ◽  
J. D. Burton ◽  
Y. Miyamoto ◽  
T. A. Waldmann

2001 ◽  
Vol 281 (5) ◽  
pp. H1992-H2001 ◽  
Author(s):  
Jonathan P. Gainor ◽  
Christine A. Morton ◽  
Jared T. Roberts ◽  
Peter A. Vincent ◽  
Fred L. Minnear

Platelets release a soluble factor into blood and conditioned medium (PCM) that decreases vascular endothelial permeability. The objective of this study was to determine the signal-transduction pathway that elicits this decrease in permeability. Permeability-decreasing activity of PCM was assessed by the real-time measurement of electrical resistance across cell monolayers derived from bovine pulmonary arteries and microvessels. Using a desensitization protocol with cAMP/protein kinase A (PKA)-enhancing agents and pharmacological inhibitors, we determined that the activity of PCM is independent of PKA and PKG. Genistein, an inhibitor of tyrosine kinases, prevented the increase in endothelial electrical resistance. Because lysophosphatidic acid (LPA) has been proposed to be responsible for this activity of PCM and is known to activate the Giprotein, inhibitors of the G protein pertussis toxin and of the associated phosphatidylinositol 3-kinase (PI3K) wortmannin were used. Pertussis toxin and wortmannin caused a 10- to 15-min delay in the characteristic rise in electrical resistance induced by PCM. Inhibition of phosphorylation of extracellular signal-regulated kinase with the mitogen-activated kinase kinase inhibitors PD-98059 and U-0126 did not prevent the activity of PCM. Similar findings with regard to the cAMP protocols and inhibition of Giand PI3K were obtained for 1-oleoyl-LPA. These results demonstrate that PCM increases endothelial electrical resistance in vitro via a novel, signal transduction pathway independent of cAMP/PKA and cGMP/PKG. Furthermore, PCM rapidly activates a signaling pathway involving tyrosine phosphorylation, the Giprotein, and PI3K.


2004 ◽  
Vol 286 (3) ◽  
pp. H940-H945 ◽  
Author(s):  
Jeffrey J. Olearczyk ◽  
Alan H. Stephenson ◽  
Andrew J. Lonigro ◽  
Randy S. Sprague

Erythrocytes are reported to release ATP in response to mechanical deformation and decreased oxygen tension. Previously we proposed that receptor-mediated activation of the heterotrimeric G protein Gsresulted in ATP release from erythrocytes. Here we investigate the hypothesis that activation of heterotrimeric G proteins of the Gisubtype are also involved in a signal transduction pathway for ATP release from rabbit erythrocytes. Heterotrimeric G proteins Gαi1, Gαi2, and Gαi3but not Gαowere identified in rabbit and human erythrocyte membranes. Pretreatment of rabbit erythrocytes with pertussis toxin (100 ng/ml, 2 h), which uncouples Gi/ofrom their effector proteins, inhibited deformation-induced ATP release. Incubation of rabbit and human erythrocytes with mastoparan (Mas, 10 μM) or Mas-7 (1 μM), which are compounds that directly activate Giproteins, resulted in ATP release. However, rabbit erythrocytes did not release ATP when incubated with Mas-17 (10 μM), which is an inactive Mas analog. In separate experiments, Mas (10 μM) but not Mas-17 (10 μM) increased intracellular concentrations of cAMP when incubated with rabbit erythrocytes. Importantly, Mas-induced ATP release from rabbit erythrocytes was inhibited after treatment with pertussis toxin (100 ng/ml, 2 h). These data are consistent with the hypothesis that the heterotrimeric G protein Giis a component of a signal transduction pathway for ATP release from erythrocytes.


Sign in / Sign up

Export Citation Format

Share Document