Heterotrimeric G protein Giis involved in a signal transduction pathway for ATP release from erythrocytes

2004 ◽  
Vol 286 (3) ◽  
pp. H940-H945 ◽  
Author(s):  
Jeffrey J. Olearczyk ◽  
Alan H. Stephenson ◽  
Andrew J. Lonigro ◽  
Randy S. Sprague

Erythrocytes are reported to release ATP in response to mechanical deformation and decreased oxygen tension. Previously we proposed that receptor-mediated activation of the heterotrimeric G protein Gsresulted in ATP release from erythrocytes. Here we investigate the hypothesis that activation of heterotrimeric G proteins of the Gisubtype are also involved in a signal transduction pathway for ATP release from rabbit erythrocytes. Heterotrimeric G proteins Gαi1, Gαi2, and Gαi3but not Gαowere identified in rabbit and human erythrocyte membranes. Pretreatment of rabbit erythrocytes with pertussis toxin (100 ng/ml, 2 h), which uncouples Gi/ofrom their effector proteins, inhibited deformation-induced ATP release. Incubation of rabbit and human erythrocytes with mastoparan (Mas, 10 μM) or Mas-7 (1 μM), which are compounds that directly activate Giproteins, resulted in ATP release. However, rabbit erythrocytes did not release ATP when incubated with Mas-17 (10 μM), which is an inactive Mas analog. In separate experiments, Mas (10 μM) but not Mas-17 (10 μM) increased intracellular concentrations of cAMP when incubated with rabbit erythrocytes. Importantly, Mas-induced ATP release from rabbit erythrocytes was inhibited after treatment with pertussis toxin (100 ng/ml, 2 h). These data are consistent with the hypothesis that the heterotrimeric G protein Giis a component of a signal transduction pathway for ATP release from erythrocytes.

Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 222
Author(s):  
Agnieszka Polit ◽  
Paweł Mystek ◽  
Ewa Błasiak

In highly organized multicellular organisms such as humans, the functions of an individual cell are dependent on signal transduction through G protein-coupled receptors (GPCRs) and subsequently heterotrimeric G proteins. As most of the elements belonging to the signal transduction system are bound to lipid membranes, researchers are showing increasing interest in studying the accompanying protein–lipid interactions, which have been demonstrated to not only provide the environment but also regulate proper and efficient signal transduction. The mode of interaction between the cell membrane and G proteins is well known. Despite this, the recognition mechanisms at the molecular level and how the individual G protein-membrane attachment signals are interrelated in the process of the complex control of membrane targeting of G proteins remain unelucidated. This review focuses on the mechanisms by which mammalian Gα subunits of G proteins interact with lipids and the factors responsible for the specificity of membrane association. We summarize recent data on how these signaling proteins are precisely targeted to a specific site in the membrane region by introducing well-defined modifications as well as through the presence of polybasic regions within these proteins and interactions with other components of the heterocomplex.


2001 ◽  
Vol 281 (4) ◽  
pp. C1158-C1164 ◽  
Author(s):  
Randy S. Sprague ◽  
Mary L. Ellsworth ◽  
Alan H. Stephenson ◽  
Andrew J. Lonigro

Previously, we reported that red blood cells (RBCs) of rabbits and humans release ATP in response to mechanical deformation and that this release of ATP requires the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). It was reported that cAMP, acting through a cAMP-dependent protein kinase, PKA, is an activator of CFTR. Here we investigate the hypothesis that cAMP stimulates ATP release from RBCs. Incubation of human and rabbit RBCs with the direct activator of adenylyl cyclase, forskolin (10 or 100 μM), with IBMX (100 μM), resulted in ATP release and increases in intracellular cAMP. In addition, epinephrine (1 μM), a receptor-mediated activator of adenylyl cyclase, stimulated ATP release from rabbit RBCs. Moreover, incubation of human and rabbit RBCs with an active cAMP analog [adenosine 3′5′-cyclic monophosphorothioate Sp-isomer (Sp-cAMP, 100 μM)] resulted in ATP release. In contrast, forskolin and Sp-cAMP were without effect on dog RBCs, cells known not to release ATP in response to deformation. When rabbit RBCs were incubated with the inactive cAMP analog and inhibitor of PKA activity, adenosine 3′,5′-cyclic monophosphorothioate Rp-isomer (100 μM), deformation-induced ATP release was attenuated. These results are consistent with the hypothesis that adenylyl cyclase and cAMP are components of a signal-transduction pathway relating RBC deformation to ATP release from human and rabbit RBCs.


2001 ◽  
Vol 281 (5) ◽  
pp. H1992-H2001 ◽  
Author(s):  
Jonathan P. Gainor ◽  
Christine A. Morton ◽  
Jared T. Roberts ◽  
Peter A. Vincent ◽  
Fred L. Minnear

Platelets release a soluble factor into blood and conditioned medium (PCM) that decreases vascular endothelial permeability. The objective of this study was to determine the signal-transduction pathway that elicits this decrease in permeability. Permeability-decreasing activity of PCM was assessed by the real-time measurement of electrical resistance across cell monolayers derived from bovine pulmonary arteries and microvessels. Using a desensitization protocol with cAMP/protein kinase A (PKA)-enhancing agents and pharmacological inhibitors, we determined that the activity of PCM is independent of PKA and PKG. Genistein, an inhibitor of tyrosine kinases, prevented the increase in endothelial electrical resistance. Because lysophosphatidic acid (LPA) has been proposed to be responsible for this activity of PCM and is known to activate the Giprotein, inhibitors of the G protein pertussis toxin and of the associated phosphatidylinositol 3-kinase (PI3K) wortmannin were used. Pertussis toxin and wortmannin caused a 10- to 15-min delay in the characteristic rise in electrical resistance induced by PCM. Inhibition of phosphorylation of extracellular signal-regulated kinase with the mitogen-activated kinase kinase inhibitors PD-98059 and U-0126 did not prevent the activity of PCM. Similar findings with regard to the cAMP protocols and inhibition of Giand PI3K were obtained for 1-oleoyl-LPA. These results demonstrate that PCM increases endothelial electrical resistance in vitro via a novel, signal transduction pathway independent of cAMP/PKA and cGMP/PKG. Furthermore, PCM rapidly activates a signaling pathway involving tyrosine phosphorylation, the Giprotein, and PI3K.


1998 ◽  
Vol 25 (5) ◽  
pp. 539 ◽  
Author(s):  
Helen R. Irving

Since receptor-coupled G proteins increase GTP hydrolysis (GTPase) activity upon ligands binding to the receptor, a study was undertaken to determine if abscisic acid (ABA) induced such an effect. Plasma membranes isolated from etiolated maize (Zea mays L.) coleoptiles were enriched in GTPase activity relative to microsomal fractions. Vanadate was included in the assay to inhibit the high levels of vanadate sensitive low affinity GTPases present. Under these conditions, GTPase activity was enhanced by Mg2+, stimulated by mastoparan, and inhibited by GTPγS indicating the presence of either monomeric or heterotrimeric G proteins. The combination of NaF and AlCl3 is expected to inhibit heterotrimeric G protein activity but had little effect on GTPase activity in maize coleoptile membranes. Cholera toxin enhanced basal GTPase activity, confirming the presence of heterotrimeric G proteins in maize plasma membranes. Pertussis toxin also slightly enhanced basal GTPase activity in maize membranes. Abscisic acid enhanced GTPase activity optimally at 5 mmol/L Mg2+ in a concentration dependent manner by 1.5-fold at 10 µmol/L and up to three-fold at 100 µmol/L ABA. Abscisic acid induced GTPase activity was inhibited by GTPγS, the combination of NaF and AlCl3, and pertussis toxin. Overall, these results are typical of a receptor-coupled G protein responding to its ligand.


2004 ◽  
Vol 101 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Chie Sakihara ◽  
William J. Perkins ◽  
David O. Warner ◽  
Keith A. Jones

Background Anesthetics inhibit airway smooth muscle contraction in part by a direct effect on the smooth muscle cell. This study tested the hypothesis that the anesthetics halothane and hexanol, which both relax airway smooth muscle in vitro, inhibit acetylcholine-promoted nucleotide exchange at the alpha subunit of the Gq/11 heterotrimeric G protein (Galphaq/11; i.e., they inhibit muscarinic receptor-Galphaq/11 coupling). Methods The effect of halothane (0.38 +/- 0.02 mm) and hexanol (10 mm) on basal and acetylcholine-stimulated Galphaq/11 guanosine nucleotide exchange was determined in membranes prepared from porcine tracheal smooth muscle. The nonhydrolyzable, radioactive form of guanosine-5'-triphosphate, [S]GTPgammaS, was used as the reporter for Galphaq/11 subunit dissociation from the membrane to soluble fraction, which was immunoprecipitated with rabbit polyclonal anti-Galphaq/11 antiserum. Results Acetylcholine caused a significant time- and concentration-dependent increase in the magnitude of Galphaq/11 nucleotide exchange compared with basal values (i.e., without acetylcholine), reaching a maximal difference at 100 microm (35.9 +/-2.9 vs. 9.8 +/-1.2 fmol/mg protein, respectively). Whereas neither anesthetic had an effect on basal Galphaq/11 nucleotide exchange, both halothane and hexanol significantly inhibited the increase in Galphaq/11 nucleotide exchange produced by 30 microm acetylcholine (by 59% and 68%, respectively). Conclusions Halothane and hexanol interact with the receptor-heterotrimeric G-protein complex in a manner that prevents acetylcholine-promoted exchange of guanosine-5(')-triphosphate for guanosine-5'-diphosphate at Galphaq/11. These data are consistent with the ability of anesthetics to interfere with cellular processes mediated by heterotrimeric G proteins in many cells, including effects on muscarinic receptor-G-protein regulation of airway smooth muscle contraction.


1998 ◽  
Vol 353 (1374) ◽  
pp. 1425-1430 ◽  
Author(s):  
Richard Hooley

Plants perceive and respond to a profusion of environmental and endogenous signals that influence their growth and development. The G–protein signalling pathway is a mechanism for transducing extracellular signals that is highly conserved in a range of eukaryotes and prokaryotes. Evidence for the existence of G–protein signalling pathways in higher plants is reviewed, and their potential involvement in plant hormone signal transduction evaluated. A range of biochemical and molecular studies have identified potential components of G–protein signalling in plants, most notably a homologue of the G–protein coupled receptor superfamily ( GCR1 ) and the G α and G β subunits of heterotrimeric G–proteins. G–protein agonists and antagonists are known to influence a variety of signalling events in plants and have been used to implicate heterotrimeric G–proteins in gibberellin and possibly auxin signalling. Antisense suppression of GCR1 in Arabidopsis leads to a phenotype which supports a role for this receptor in cytokinin signalling. These observations suggest that higher plants have at least some of the components of G–protein signalling pathways and that these might be involved in the action of certain plant hormones.


1992 ◽  
Vol 12 (5) ◽  
pp. 1977-1985 ◽  
Author(s):  
C Sadhu ◽  
D Hoekstra ◽  
M J McEachern ◽  
S I Reed ◽  
J B Hicks

We have isolated a gene, designated CAG1, from Candida albicans by using the G-protein alpha-subunit clone SCG1 of Saccharomyces cerevisiae as a probe. Amino acid sequence comparison revealed that CAG1 is more homologous to SCG1 than to any other G protein reported so far. Homology between CAG1 and SCG1 not only includes the conserved guanine nucleotide binding domains but also spans the normally variable regions which are thought to be involved in interaction with the components of the specific signal transduction pathway. Furthermore, CAG1 contains a central domain, previously found only in SCG1. cag1 null mutants of C. albicans created by gene disruption produced no readily detectable phenotype. The C. albicans CAG1 gene complemented both the growth and mating defects of S. cerevisiae scg1 null mutants when carried on either a low- or high-copy-number plasmid. In diploid C. albicans, the CAG1 transcript was readily detectable in mycelial and yeast cells of both the white and opaque forms. However, the CAG1-specific transcript in S. cerevisiae transformants containing the C. albicans CAG1 gene was observed only in haploid cells. This transcription pattern matches that of SCG1 in S. cerevisiae and is caused by a1-alpha 2 mediated repression in diploid cells. That is, CAG1 behaves as a haploid-specific gene in S. cerevisiae, subject to control by the a1-alpha 2 mating-type regulation pathway. We infer from these results that C. albicans may have a signal transduction system analogous to that controlling mating type in S. cerevisiae or possibly even a sexual pathway that has so far remained undetected.


Sign in / Sign up

Export Citation Format

Share Document