Multiple Deletions of mtDNA Remove the Light Strand Origin of Replication

2000 ◽  
Vol 279 (2) ◽  
pp. 595-601 ◽  
Author(s):  
Corina Bank ◽  
Tewfik Soulimane ◽  
J.Michael Schröder ◽  
Gerhard Buse ◽  
Stefanie Zanssen
Author(s):  
Daniella F Lato ◽  
G Brian Golding

Abstract Increasing evidence supports the notion that different regions of a genome have unique rates of molecular change. This variation is particularly evident in bacterial genomes where previous studies have reported gene expression and essentiality tend to decrease, while substitution rates usually increases with increasing distance from the origin of replication. Genomic reorganization such as rearrangements occur frequently in bacteria and allow for the introduction and restructuring of genetic content, creating gradients of molecular traits along genomes. Here, we explore the interplay of these phenomena by mapping substitutions to the genomes of Escherichia coli, Bacillus subtilis, Streptomyces, and Sinorhizobium meliloti, quantifying how many substitutions have occurred at each position in the genome. Preceding work indicates that substitution rate significantly increases with distance from the origin. Using a larger sample size and accounting for genome rearrangements through ancestral reconstruction, our analysis demonstrates that the correlation between the number of substitutions and distance from the origin of replication is often significant but small and inconsistent in direction. Some replicons had a significantly decreasing trend (E. coli and the chromosome of S. meliloti), while others showed the opposite significant trend (B. subtilis, Streptomyces, pSymA and pSymB in S. meliloti). dN, dS and ω were examined across all genes and there was no significant correlation between those values and distance from the origin. This study highlights the impact that genomic rearrangements and location have on molecular trends in some bacteria, illustrating the importance of considering spatial trends in molecular evolutionary analysis. Assuming that molecular trends are exclusively in one direction can be problematic.


2005 ◽  
Vol 168 (7) ◽  
pp. 999-1012 ◽  
Author(s):  
Jeff Bachant ◽  
Shannon R. Jessen ◽  
Sarah E. Kavanaugh ◽  
Candida S. Fielding

The budding yeast S phase checkpoint responds to hydroxyurea-induced nucleotide depletion by preventing replication fork collapse and the segregation of unreplicated chromosomes. Although the block to chromosome segregation has been thought to occur by inhibiting anaphase, we show checkpoint-defective rad53 mutants undergo cycles of spindle extension and collapse after hydroxyurea treatment that are distinct from anaphase cells. Furthermore, chromatid cohesion, whose dissolution triggers anaphase, is dispensable for S phase checkpoint arrest. Kinetochore–spindle attachments are required to prevent spindle extension during replication blocks, and chromosomes with two centromeres or an origin of replication juxtaposed to a centromere rescue the rad53 checkpoint defect. These observations suggest that checkpoint signaling is required to generate an inward force involved in maintaining preanaphase spindle integrity during DNA replication distress. We propose that by promoting replication fork integrity under these conditions Rad53 ensures centromere duplication. Replicating chromosomes can then bi-orient in a cohesin-independent manner to restrain untimely spindle extension.


1979 ◽  
Vol 43 (0) ◽  
pp. 139-145 ◽  
Author(s):  
W. Messer ◽  
M. Meijer ◽  
H. E. N. Bergmans ◽  
F. G. Hansen ◽  
K. von Meyenburg ◽  
...  

2003 ◽  
Vol 77 (24) ◽  
pp. 13315-13322 ◽  
Author(s):  
Yiguo Hong ◽  
John Stanley ◽  
Rene van Wezel

ABSTRACT The origin of replication of African cassava mosaic virus (ACMV) and a gene expression vector based on Potato virus X were exploited to devise an in planta system for functional analysis of the geminivirus replication-associated protein (Rep) in transgenic Nicotiana benthamiana line pOri-2. This line contains an integrated copy of a tandem repeat of the ACMV origin of replication flanking nonviral sequences that can be mobilized and replicated by Rep as an episomal replicon. A Rep-GFP fusion protein can also mobilize and amplify the replicon, facilitating Rep detection in planta. The activity of Rep and its mutants, Rep-mediated host response, and the correlation between Rep intracellular localization and biological functions could be effectively assessed by using this in planta system. Our results indicate that modification of amino acid residues R2, R5, R7 and K11 or H56, L57 and H58 prevent Rep function in replication. This defect correlates with possible loss of Rep nuclear localization and inability to trigger the host defense mechanism resembling a hypersensitive response.


Sign in / Sign up

Export Citation Format

Share Document