Expression and Potential Role of Inducible Nitric Oxide Synthase in the Central Nervous System of Theiler's Murine Encephalomyelitis Virus-Induced Demyelinating Disease

1999 ◽  
Vol 194 (2) ◽  
pp. 186-193 ◽  
Author(s):  
Teruaki Iwahashi ◽  
Atsushi Inoue ◽  
Chang-Sung Koh ◽  
Tae-Kyun Shin ◽  
Byung S. Kim
Author(s):  
Patricia Alves Reis ◽  
Cassiano Felippe Gonçalves de Albuquerque ◽  
Tatiana Maron‐Gutierrez ◽  
Adriana Ribeiro Silva ◽  
Hugo Caire de Castro Faria Neto

1999 ◽  
Vol 73 (10) ◽  
pp. 8781-8790 ◽  
Author(s):  
D. M. Andrews ◽  
V. B. Matthews ◽  
L. M. Sammels ◽  
A. C. Carrello ◽  
P. C. McMinn

ABSTRACT A study of immunopathology in the central nervous system (CNS) during infection with a virulent strain of Murray Valley encephalitis virus (MVE) in weanling Swiss mice following peripheral inoculation is presented. It has previously been shown that virus enters the murine CNS 4 days after peripheral inoculation, spreads to the anterior olfactory nucleus, the pyriform cortex, and the hippocampal formation at 5 days postinfection (p.i.), and then spreads throughout the cerebral cortex, caudate putamen, thalamus, and brain stem between 6 and 9 days p.i. (P. C. McMinn, L. Dalgarno, and R. C. Weir, Virology 220:414–423, 1996). Here we show that the encephalitis which develops in MVE-infected mice from 5 days p.i. is associated with the development of a neutrophil inflammatory response in perivascular regions and in the CNS parenchyma. Infiltration of neutrophils into the CNS was preceded by increased expression of tumor necrosis factor alpha and the neutrophil-attracting chemokine N51/KC within the CNS. Depletion of neutrophils with a cytotoxic monoclonal antibody (RB6-8C5) resulted in prolonged survival and decreased mortality in MVE-infected mice. In addition, neutrophil infiltration and disease onset correlated with expression of the enzyme-inducible nitric oxide synthase (iNOS) within the CNS. Inhibition of iNOS by aminoguanidine resulted in prolonged survival and decreased mortality in MVE-infected mice. This study provides strong support for the hypothesis that Murray Valley encephalitis is primarily an immunopathological disease.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Srinivas Sriramula ◽  
Huijing Xia ◽  
Eric Lazartigues

Elevated reactive oxygen species (ROS) in the central nervous system (CNS) through NADPH oxidase and diminished Nitric oxide (NO) levels are involved in the pathogenesis of hypertension. We previously reported that central Angiotensin Converting Enzyme 2 (ACE2) overexpression prevents the development of hypertension induced by DOCA-salt in a transgenic mouse model (syn-hACE2; SA) with human ACE2 targeted selectively to neurons in the CNS. While baseline blood pressure (BP; telemetry) was not different among genotypes, DOCA-salt treatment (1mg/g body wt DOCA, 1% saline in drinking water for 3 weeks) resulted in significantly lower BP level in SA mice (122 ±3 mmHg, n=12) compared to non-transgenic (NT) littermates (138 ±3 mmHg, n=8). To elucidate the mechanisms involved in this response, we investigated the paraventricular nucleus (PVN) expression of Nox-2 (catalytic subunit of NADPH oxidase), 3-nitrotyrosine, and endothelial nitric oxide synthase (eNOS) and anti-oxidant enzymes superoxide dismutase (SOD) and catalase in the hypothalamus. DOCA-salt treatment resulted in decreased catalase (95.2 ±5.6 vs. 113.8 ±17.6 mmol/min/ml, p<0.05) and SOD (4.1 ±0.4 vs. 5.9 ±0.2 U/ml, p<0.01) activities in hypothalamic homogenates of NT mice, which was prevented by ACE2 overexpression (141.8 ±9.9 vs. 142.1 ±9.2 mmol/min/ml and 5.9 ±0.3 vs. 7.9 ±0.2 U/ml, respectively). NT mice treated with DOCA-salt showed increased oxidative stress as indicated by increased expression of Nox-2 (61 ±5 % increase, n=9, p<0.001 vs. NT) and 3-nitrotyrosine (89 ±32 % increase, n=9, p<0.01 vs. NT) in the PVN which was attenuated in SA mice. Furthermore, DOCA-salt hypertension resulted in decreased phosphorylation of eNOS-ser1177 in the PVN (33 ±5 % decrease, n=9, p<0.05 vs NT) and this decrease was prevented by ACE2 overexpression. Taken together, these data provide evidence that brain ACE2 regulates the balance between NO and ROS levels, thereby preventing the development of DOCA-salt hypertension.


Sign in / Sign up

Export Citation Format

Share Document