Proteins Homologous to the Xenopus Germ Cell-Specific RNA-Binding Proteins p54/p56 Are Temporally Expressed in Mouse Male Germ Cells

1993 ◽  
Vol 158 (1) ◽  
pp. 90-100 ◽  
Author(s):  
Yunhee Kim Kwon ◽  
Mary T. Murray ◽  
Norman B. Hecht
Reproduction ◽  
2010 ◽  
Vol 139 (2) ◽  
pp. 381-393 ◽  
Author(s):  
Masashi Yamaji ◽  
Takashi Tanaka ◽  
Mayo Shigeta ◽  
Shinichiro Chuma ◽  
Yumiko Saga ◽  
...  

Mutations of RNA-binding proteins such as NANOS3, TIAL1, and DND1 in mice have been known to result in the failure of survival and/or proliferation of primordial germ cells (PGCs) soon after their fate is specified (around embryonic day (E) 8.0), leading to the infertility of these animals. However, the mechanisms of actions of these RNA-binding proteins remain largely unresolved. As a foundation to explore the role of these RNA-binding proteins in germ cells, we established a novel transgenic reporter strain that expresses NANOS3 fused with EGFP under the control of Nanos3 regulatory elements. NANOS3–EGFP exhibited exclusive expression in PGCs as early as E7.25, and continued to be expressed in female germ cells until around E14.5 and in male germ cells throughout the fetal period with declining expression levels after E16.5. NANOS3–EGFP resumed strong expression in postnatal spermatogonia and continued to be expressed in undifferentiated spermatogonial cells in adults. Importantly, the Nanos3–EGFP transgene rescued the sterile phenotype of Nanos3 homozygous mutants, demonstrating the functional equivalency of NANOS3–EGFP with endogenous NANOS3. We found that throughout germ cell development, a predominant amount of  NANOS3–EGFP co-localized with TIAL1 (also known as TIAR) and phosphorylated eukaryotic initiation factor 2α, markers for the stress granules, whereas a fraction of it showed co-localization with DCP1A, a marker for the processing bodies. On the other hand, NANOS3–EGFP did not co-localize with Tudor domain-containing protein 1, a marker for the intermitochondrial cements, in spermatogenic cells. These findings unveil the presence of distinct posttranscriptional regulations in PGCs soon after their specification, for which RNA-binding proteins such as NANOS3 and TIAL1 would play critical functions.


2020 ◽  
Author(s):  
Ryuki Shimada ◽  
Hiroko Koike ◽  
Takamasa Hirano ◽  
Yumiko Saga

AbstractDuring murine germ cell development, male germ cells enter the mitotically arrested G0 stage, which is an initial step of sexually dimorphic differentiation. The male specific RNA-binding protein NANOS2 has a key role in suppressing the cell cycle in germ cells. However, the detailed mechanism of how NANOS2 regulates the cell cycle remains unclear. Using single-cell RNA sequencing (scRNA-seq), we extracted the cell cycle state of each germ cell in wild-type and Nanos2-KO testes, and revealed that Nanos2 expression starts in mitotic cells and induces mitotic arrest. We also found that NANOS2 and p38 MAPK work in parallel to regulate the cell cycle, suggesting that several different cascades are involved in the induction of cell cycle arrest. Furthermore, we identified Rheb, a regulator of mTORC1, and Ptma as possible targets of NANOS2. We propose that the repression of the cell cycle is a primary function of NANOS2 and that it is mediated via the suppression of mTORC1 activity by repressing Rheb in a post-transcriptional manner.


2010 ◽  
Vol 22 (9) ◽  
pp. 85
Author(s):  
E. A. McLaughlin ◽  
B. A. Fraser ◽  
V. Pye ◽  
M. Bigland ◽  
N. A. Siddall ◽  
...  

Mammalian meiosis is a tightly regulated process involving specialized cell cycle progression and morphogenetic changes. We have demonstrated that the Musashi family of RNA binding proteins is implicated in the regulation of spermatogonial stem self renewal and germ cell differentiation. Here we describe the novel mechanism by which the Musashi family proteins, Msi1 and Msi2, act to control exit from spermatogonial mitotic amplification and normal entry into meiosis. Gene and protein analysis indicated overlapping Msi1 and Msi2 profiles in enriched populations of isolated germ cells and reciprocal subcellular expression patterns in spermatogonia and pachytene spermatocytes/ round spermatids in testes sections. Recombinant Msi1 protein-RNA pulldown and microarray analysis coupled with in vitro shRNA knockdown studies in spermatogonial culture and subsequent immunoprecipitation and qPCR established that Msi1 targeted Msi2 mRNA for post transcriptional translational repression. Immunoprecipitation of Msi2 target mRNA and subsequent qPCR together with in vitro shRNA knockdown studies inround spermatidculture identified a cell cycle inhibitor protein CDKN1C (p57kip2) as the principal target of Msi2 translational inhibition. Immunolocalisation of CDKN1C protein indicated that expression of this cell cycle regulator coincided with the nuclear import of Msi1 and the appearance of cytoplasmic Msi2 expression in early pachytene spermatocytes. Using a transgenic Msi1 overexpression mouse model in conjunction with quantitative gene and protein expression, we confirmed Msi1 targeting of Msi2 and subsequent Msi2 targeting of CDKN1C for translational repression in vivo. Ectopic overexpression of Msi1 in germ cellsinduces substantial Msi2 downregulation and aberrant CDKN1C expression, resulting in abnormal spermatogenic differentiation, germ cell apoptosis/arrest and sterility. In conclusion, our results indicate a sophisticated molecular switch encompassing cell cycle protein regulation by Musashi family proteins, is required for normal exit from mitotic division, entry into meiosis and post meiotic germ cell differentiation.


2021 ◽  
Author(s):  
Takamasa Hirano ◽  
Danelle Wright ◽  
Atsushi Suzuki ◽  
Makoto Kiso ◽  
Yumiko Saga

Genomics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 266-273 ◽  
Author(s):  
Shanli Tsui ◽  
Tiane Dai ◽  
Susanne Roettger ◽  
Werner Schempp ◽  
Eduardo C. Salido ◽  
...  

Development ◽  
2020 ◽  
pp. dev.191916
Author(s):  
Danelle Wright ◽  
Makoto Kiso ◽  
Yumiko Saga

NANOS2 and NANOS3 are evolutionarily conserved RNA-binding proteins involved in murine germ cell development. NANOS3 is required for protection from apoptosis during migration and gonadal colonization in both sexes, whereas NANOS2 is male-specific and required for the male-type differentiation of germ cells. Ectopic NANOS2 rescues the functions of NANOS3, but NANOS3 cannot rescue NANOS2 function even though its expression is up-regulated in Nanos2-null conditions. It is unknown why NANOS3 cannot rescue NANOS2 function and it is unclear whether NANOS3 plays any role in male germ cell differentiation. To address these questions, we made conditional Nanos3/Nanos2 knockout mice and chimeric mice expressing chimeric NANOS proteins. Conditional double knockout of Nanos2 and 3 led to the rapid loss of germ cells, and in vivo and in vitro experiments revealed that DND1 and NANOS2 binding is dependent on the specific NANOS2 zinc finger structure. Moreover, murine NANOS3 failed to bind CNOT1, an interactor of NANOS2 at its N-terminal. Collectively, our study suggests that the inability of NANOS3 to rescue NANOS2 function is due to poor DND1 recruitment and CNOT1 binding.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Andrew J. Friday ◽  
Brett D. Keiper

Ultimately, the production of new proteins in undetermined cells pushes them to new fates. Other proteins hold a stem cell in a mode of self-renewal. In germ cells, these decision-making proteins are produced largely from translational control of preexisting mRNAs. To date, all of the regulation has been attributed to RNA binding proteins (RBPs) that repress mRNAs in many models of germ cell development (Drosophila, mouse,C. elegans, andXenopus). In this review, we focus on the selective, positive function of translation initiation factors eIF4E and eIF4G, which recruit mRNAs to ribosomes upon derepression. Evidence now shows that the two events are not separate but rather are coordinated through composite complexes of repressors and germ cell isoforms of eIF4 factors. Strikingly, the initiation factor isoforms are themselves mRNA selective. The mRNP complexes of translation factors and RBPs are built on specific populations of mRNAs to prime them for subsequent translation initiation. Simple rearrangement of the partners causes a dormant mRNP to become synthetically active in germ cells when and where they are required to support gametogenesis.


Sign in / Sign up

Export Citation Format

Share Document