MRI Analysis of the Changes in Apparent Water Diffusion Coefficient, T2 Relaxation Time, and Cerebral Blood Flow and Volume in the Temporal Evolution of Cerebral Infarction Following Permanent Middle Cerebral Artery Occlusion in Rats

2001 ◽  
Vol 169 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Markus Rudin ◽  
Diana Baumann ◽  
Dimitrios Ekatodramis ◽  
Roger Stirnimann ◽  
Kevin H. McAllister ◽  
...  
Neuroreport ◽  
2000 ◽  
Vol 11 (15) ◽  
pp. 3333-3336 ◽  
Author(s):  
Lidong Zhu ◽  
Nobuhito Saito ◽  
Osamu Abe ◽  
Toshiyuki Okubo ◽  
Haruyasu Yamada ◽  
...  

1989 ◽  
Vol 257 (5) ◽  
pp. H1656-H1662
Author(s):  
M. Anwar ◽  
H. R. Weiss

The effects of adenosine on regional cerebral blood flow and indexes of the total and perfused microvascular bed were studied after 1 h of middle cerebral artery occlusion in the anesthetized rat. Iodo[14C]antipyrine was used to determine cerebral blood flow. Fluorescein isothiocyanate-dextran was used to study the perfused microvasculature, and an alkaline phosphatase stain was used to identify the total bed. Mean arterial blood pressure was significantly reduced by adenosine. Cerebral blood flow increased significantly by 75%, except in the flow-restricted cortex where flow averaged 28 +/- 15 (SD) ml.min-1.100 g-1 in control and 34 +/- 33 ml.min-1.100 g-1 in adenosine-treated animals. No significant regional structural differences were observed within the microvascular beds of the two groups. The percentage of the microvascular volume perfused increased significantly in all brain regions in the adenosine-treated rats, including the flow-restricted cortex. The percent perfused arteriolar volume in the flow-restricted cortex was 30 +/- 12% in control and 95 +/- 3% in adenosine-treated animals. Similar values for the capillary bed were 22 +/- 10% in control and 54 +/- 3% in adenosine-treated rats. These results indicate a maintenance of flow with a reduction in diffusion distances in the flow-restricted cortex after treatment with adenosine.


2000 ◽  
Vol 20 (6) ◽  
pp. 931-936 ◽  
Author(s):  
Hilary V. O. Carswell ◽  
Niall H. Anderson ◽  
James J. Morton ◽  
James McCulloch ◽  
Anna F. Dominiczak ◽  
...  

Recently the authors have shown that female stroke-prone spontaneously hypertensive rats (SHRSPs) in proestrus (high endogenous estrogen), sustain more than 20% smaller infarcts after middle cerebral artery occlusion (MCAO) compared with SHRSPs in metestrus (low endogenous estrogen). Because estrogen has vasodilator properties, the authors investigated whether the estrous state influences cerebral blood flow (CBF) after MCAO. CBF was measured 2.5 hours after a distal MCAO by [14C]iodo-antipyrine autoradiography in conscious SHRSPs either in metestrus or in proestrus. There were no significant differences in CBF when analyzed either at predetermined anatomic regions or by cumulative distribution analysis of areas with flow <25 mL/100 g/min. As a positive internal control, the authors compared results in SHRSPs with those in their normotensive reference strain, Wistar Kyoto rat. SHRSPs displayed more severe and widespread ischemia than Wistar Kyoto rats. Thus, the absence of demonstrable CBF differences between estrous states appears to be unrelated to the CBF measurement paradigm. In conclusion, the smaller infarct size afforded in proestrus in SHRSPs is unlikely to be due to an influence on CBF.


Sign in / Sign up

Export Citation Format

Share Document