Characterization of the Mouse Src Homology 3 Domain GeneSh3d2con Chr 7 Demonstrates Coexpression with Huntingtin in the Brain and Identifies the Processed PseudogeneSh3d2c-ps1on Chr 2

Genomics ◽  
1998 ◽  
Vol 54 (3) ◽  
pp. 505-510 ◽  
Author(s):  
U. Zechner ◽  
S. Scheel ◽  
M. Hemberger ◽  
M. Hopp ◽  
T. Haaf ◽  
...  
1997 ◽  
Vol 8 (10) ◽  
pp. 2003-2015 ◽  
Author(s):  
Patrick Wigge ◽  
Katinka Köhler ◽  
Yvonne Vallis ◽  
Christopher A. Doyle ◽  
David Owen ◽  
...  

Amphiphysin (Amph) is a src homology 3 domain-containing protein that has been implicated in synaptic vesicle endocytosis as a result of its interaction with dynamin. In a screen for novel members of the amphiphysin family, we identified Amph2, an isoform 49% identical to the previously characterized Amph1 protein. The subcellular distribution of this isoform parallels Amph1, both being enriched in nerve terminals. Like Amph1, a role in endocytosis at the nerve terminal is supported by the rapid dephosphorylation of Amph2 on depolarization. Importantly, the two isoforms can be coimmunoprecipitated from the brain as an equimolar complex, suggesting that the two isoforms act in concert. As determined by cross-linking of brain extracts, the Amph1–Amph2 complex is a 220- to 250-kDa heterodimer. COS cells transfected with either Amph1 or Amph2 show greatly reduced transferrin uptake, but coexpression of the two proteins rescues this defect, supporting a role for the heterodimer in clathrin-mediated endocytosis. Although the src homology 3 domains of both isoforms interact with dynamin, the heterodimer can associate with multiple dynamin molecules in vitro and activates dynamin’s GTPase activity. We propose that it is an amphiphysin heterodimer that drives the recruitment of dynamin to clathrin-coated pits in endocytosing nerve terminals.


Endocrinology ◽  
2005 ◽  
Vol 146 (9) ◽  
pp. 3757-3764 ◽  
Author(s):  
James Trevaskis ◽  
Ken Walder ◽  
Victoria Foletta ◽  
Lyndal Kerr-Bayles ◽  
Janine McMillan ◽  
...  

Abstract To identify genes involved in the central regulation of energy balance, we compared hypothalamic mRNA from lean and obese Psammomys obesus, a polygenic model of obesity, using differential display PCR. One mRNA transcript was observed to be elevated in obese, and obese diabetic, P. obesus compared with lean animals and was subsequently found to be increased 4-fold in the hypothalamus of lethal yellow agouti (Ay/a) mice, a murine model of obesity and diabetes. Intracerebroventricular infusion of antisense oligonucleotide targeted to this transcript selectively suppressed its hypothalamic mRNA levels and resulted in loss of body weight in both P. obesus and Sprague Dawley rats. Reductions in body weight were mediated by profoundly reduced food intake without a concomitant reduction in metabolic rate. Yeast two-hybrid screening, and confirmation in mammalian cells by bioluminescence resonance energy transfer analysis, demonstrated that the protein it encodes interacts with endophilins, mediators of synaptic vesicle recycling and receptor endocytosis in the brain. We therefore named this transcript Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1). SGIP1 encodes a large proline-rich protein that is expressed predominantly in the brain and is highly conserved between species. Together these data suggest that SGIP1 is an important and novel member of the group of neuronal molecules required for the regulation of energy homeostasis.


Blood ◽  
2002 ◽  
Vol 100 (10) ◽  
pp. 3822-3824 ◽  
Author(s):  
A. Valance Washington ◽  
Laura Quigley ◽  
Daniel W. McVicar

The TREMs (triggering receptors expressed on myeloid cells) represent a family of 5 receptors clustered on murine chromosome 17. TREMs 1 and 2 affect various aspects of myeloid cell activation and development, including responsiveness to lipopolysaccharide and regulation of dendritic cell maturation, yet no inhibitory receptor has been demonstrated within this cluster. Here we characterize TLT-1 (TREM-like transcript-1), a putative inhibitory receptor within the TREM cluster that contains an extracellular V-set Ig domain, a proline-rich region, and an immune receptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic tail. To our knowledge, TLT-1 is the first ITIM-containing receptor carrying a potential Src homology 3 domain ligand. TLT-1 transcripts are abundant in bone marrow cells, but not in lymphocytes, and phosphorylated TLT-1 associates with SHP-1, suggesting that it is indeed an inhibitory receptor. Based on these characteristics, it is likely that TLT-1 regulates the signaling of the TREM family receptors.


2015 ◽  
Vol 7 (17) ◽  
pp. 7234-7241 ◽  
Author(s):  
Rachel E. Horness ◽  
Edward J. Basom ◽  
Megan C. Thielges

We present site-selective CNPhe labeling combined with FT IR spectroscopy as a fast, minimally-perturbative, reproducible approach to characterize protein microenvironments.


2012 ◽  
Vol 23 (15) ◽  
pp. 2891-2904 ◽  
Author(s):  
Jackie Cheng ◽  
Alexandre Grassart ◽  
David G. Drubin

Myosin 1E (Myo1E) is recruited to sites of clathrin-mediated endocytosis coincident with a burst of actin assembly. The recruitment dynamics and lifetime of Myo1E are similar to those of tagged actin polymerization regulatory proteins. Like inhibition of actin assembly, depletion of Myo1E causes reduced transferrin endocytosis and a significant delay in transferrin trafficking to perinuclear compartments, demonstrating an integral role for Myo1E in these actin-mediated steps. Mistargeting of GFP-Myo1E or its src-homology 3 domain to mitochondria results in appearance of WIP, WIRE, N-WASP, and actin filaments at the mitochondria, providing evidence for Myo1E's role in actin assembly regulation. These results suggest for mammalian cells, similar to budding yeast, interdependence in the recruitment of type I myosins, WIP/WIRE, and N-WASP to endocytic sites for Arp2/3 complex activation to assemble F-actin as endocytic vesicles are being formed.


Sign in / Sign up

Export Citation Format

Share Document