Electroacoustic Determination of Particle Size and Zeta Potential

1995 ◽  
Vol 173 (2) ◽  
pp. 406-418 ◽  
Author(s):  
R.W. O'Brien ◽  
D.W. Cannon ◽  
W.N. Rowlands
Keyword(s):  
1996 ◽  
Vol 63 (3) ◽  
pp. 387-404 ◽  
Author(s):  
Theresa Wade ◽  
James K. Beattie ◽  
William N. Rowlands ◽  
Mary-Ann Augustin

SummaryMeasurements of the zeta potential and particle size of casein micelles in skim milk suspensions at natural and lower pH have been made using the technique of electroacoustics. This technique requires no dilution or change of environment of the casein micelles. The zeta potential obtained at natural pH for a commercial skim milk suspension was −18 mV; it became less negative with decreasing pH. The median particle size observed at natural pH for a commercial skim milk suspension was 0·2 εm, in good agreement with previously reported values. The particle size increased as the pH was decreased.


2008 ◽  
Vol 44 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Z. Dohnalová ◽  
L. Svoboda ◽  
P. Sulcová

The objective of this work is the investigation of the kaolin dispersion by the ultrasonic techniques. In contact with aqueous solution clay minerals show cation - exchange properties and certain degree of dissolution or rather selective leaching of components. The work is divided into two main parts - determination of zeta potential and particle size distribution. The first part is focused on measuring of zeta potential. Effects of concentration of solid, different kind of electrolytes (0.01 M KCl, 0.01 M MgCl2 and 0.01 M CaCl2), pH and temperature of the dispersions are investigated. The isoelectric points (IEP) of kaolin suspension are about pH 4-5. Electrolytes containing monovalent cations such as K+ become zeta potential more negative compared to the values obtained with water. Such behavior is explained by the exchange of K+ ions with H+ ions in the system. When the electrolyte is formed by divalent cations such as Mg2+ or Ca2+, the values of zeta potential become less negative than zeta potential of kaolin in water. The second part is focused on the determination of particle size distribution with respect to dispersing conditions, such as the optimal dispersing agent (Na2SiO3, (NaPO3)6, Na4P2O7 or Busperse), time and power of ultrasonication and also the tracking of dispersion stability that is expressed by the measuring of particle size distribution during certain time period.


Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.


Author(s):  
Kranti Singh ◽  
Surajpal Verma ◽  
Shyam Prasad ◽  
Indu Bala

Ciprofloxacin hydrochloride loaded Eudragit RS100 nanoparticles were prepared by using w/o/w emulsification (multiple emulsification) solvent evaporation followed by drying of nanoparticles at 50°C. The nanoparticles were further incorporated into the pH-triggered in situ gel forming system which was prepared using Carbopol 940 in combination with HPMC as viscosifying agent. The developed nanoparticles was evaluated for particle size, zeta potential value and loading efficiency; nanoparticle incorporated in situ gelling system was evaluated for pH, clarity, gelling strength, rheological studies, in-vitro release studies and ex-vivo precorneal permeation studies. The nanopaticle showed the mean particle size varying between 263.5nm - 325.9 nm with the mean zeta potential value of -5.91 mV to -8.13 mV and drug loading capacity varied individually between 72.50% to 98.70% w/w. The formulation was clear with no suspended particles, showed good gelling properties. The gelling was quick and remained for longer time period. The developed formulation was therapeutically efficacious, stable and non-irritant. It provided the sustained release of drug over a period of 8-10 hours.


Sign in / Sign up

Export Citation Format

Share Document